数 学

(選 択)

【配点】	
1	60点
2	30点
3	40点
4	40点
5	30点

(注 意)

- 1. 問題冊子は指示があるまで開かないこと。
- 2. 問題冊子は 1 ページから 11 ページまでである。 検査開始の合図のあとで確かめること。
- 3. 答えは、すべて解答用紙に記入すること。
- 4. 解答用紙の総得点欄および得点欄には記入しないこと。
- 5. 定規, コンパス, ものさし, 分度器および計算機は用いないこと。

数学

(数学の問題は裏面から記載)

1 次の問いに答えよ。

- (1) 直線 y=2x+k が放物線 $x^2=-y$ の接線となるとき, 定数 k の値を求めよ。
- (2) 関数 $y = \sin x + \sqrt{3}\cos x$ の最大値を求めよ。
- (3) 平面 ax + 2y z = 6 と直線 $\frac{x-1}{-1} = \frac{y+1}{5} = \frac{z-4}{7}$ が平行となるとき,a の値を求めよ。
- (4) $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$ の値を求めよ。
- (5) 2 つの関数 $f(t)=1-t, g(t)=e^t$ のたたみこみ f*g のラプラス変換は次のうちどれか。記号で答えよ。

$$(5)$$
 の解答群 $7 \frac{1}{s}$ イ $\frac{1}{s^2}$ ウ $\frac{1}{s-1}$ エ $\frac{1}{(s-1)^2}$ オ $\frac{s-1}{s}$ カ $\frac{s-1}{s^2}$

(6) 複素関数 $f(z) = \frac{z-2}{z^2(z-1)^3}$ の z=0 における留数を求めよ。

- 2 a,b は定数で a>0 のとき、曲線 $f(x)=-x^3+ax^2+bx$ は x 軸と 3 点で交わり、さ らに次の2つの条件を満たす。
 - $x = \alpha, \beta \ (\alpha < \beta)$ において極値をとり、極大値と極小値の差は $\frac{2}{27}a^2(\beta \alpha)$ で ある。すなわち

$$f(\beta) - f(\alpha) = \frac{2}{27}a^2(\beta - \alpha)$$

が成り立つ。

• 曲線 y=f(x) と x 軸で囲まれる図形のうち,x 軸より上にある部分の面積は $\frac{1}{4}$ である。 すなわち,f(x) と x 軸の交点の x 座標を小さい順に x_1,x_2,x_3 とする とき

$$\int_{x_2}^{x_3} f(x) \, dx = \frac{1}{4}$$

が成り立つ。

このとき、次の問いに答えよ。

(1) α, β について

$$\alpha + \beta = (i), \quad \alpha\beta = (ii)$$

が成り立つ。(i),(ii) に適するものは次のうちどれか。記号で答えよ。

- (2) a,b の関係式は次のうちどれか。記号で答えよ。

(3) a の値を求めよ。

(計 算 用 紙)

3 定数係数斉次線形微分方程式

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + \alpha x = 0$$

について、次の問いに答えよ。ただし、 $\alpha > 0$ とする。

- (1) $\alpha = 3$ のとき、一般解は下記の解答群のうちどれか。記号で答えよ。
- (2) $\alpha = 4$ のとき、一般解は下記の解答群のうちどれか。記号で答えよ。
- (3) $\alpha = 5$ のとき、一般解は下記の解答群のうちどれか。記号で答えよ。

$$-(1),(2),(3)$$
 の解答群(C_1,C_2 は任意定数)——

(4) 初期条件「t=0 のとき $x=1, \frac{dx}{dt}=-1$ 」を満たす解が、常に x(t)>0 である とき、 α の値の範囲は次のうちどれか。記号で答えよ。

4 連立漸化式

$$\begin{cases} x_{n+1} = 5x_n - 2y_n \\ y_{n+1} = -2x_n + 8y_n \end{cases}$$
 $(n \ge 1$ は自然数)

の一般項 $\{x_n\}$, $\{y_n\}$ を行列を用いて次のように求めた。 $(1)\sim(4)$ は適する数を求め,(5), (6) に適するものは,それぞれの解答群から選び,記号で答えよ。

与えられた漸化式を行列を用いて表すと

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} 5 & -2 \\ -2 & 8 \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix} \quad (n \ge 1 は自然数)$$

となる。

ここで, $A = \begin{pmatrix} 5 & -2 \\ -2 & 8 \end{pmatrix}$ とおくと A の固有値は,小さい値から順に

$$\lambda_1 = \boxed{(1)}, \quad \lambda_2 = \boxed{(2)}$$

であり、それぞれに対応する固有ベクトルは c_1, c_2 を 0 でない定数として、順に

$$v_1 = c_1 \begin{pmatrix} 2 \\ \hline (3) \end{pmatrix}, \quad v_2 = c_2 \begin{pmatrix} -1 \\ \hline (4) \end{pmatrix}$$

である。

次に、 v_1, v_2 において $c_1 = 1, c_2 = 1$ としたベクトルをそれぞれ p_1, p_2 として

$$P = (\boldsymbol{p}_1 \ \boldsymbol{p}_2)$$
 とおくと $P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$

と対角化できる。これより

$$A=P\left(egin{array}{cc} \lambda_1 & 0 \ 0 & \lambda_2 \end{array}
ight)P^{-1}$$
 であるから $A^n=P\left(egin{array}{cc} \lambda_1^n & 0 \ 0 & \lambda_2^n \end{array}
ight)P^{-1}= \overline{\left(5
ight)}$

である。

ところで, 行列表示した漸化式は

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A \begin{pmatrix} x_n \\ y_n \end{pmatrix} = A^2 \begin{pmatrix} x_{n-1} \\ y_{n-1} \end{pmatrix} = \cdots$$

となるため、数列 $\{x_1\}, \{y_1\}$ の一般項は、例えば、初項が $x_1 = \alpha, y_1 = \beta$ であるとき

$$\left(\begin{array}{c} x_n \\ y_n \end{array}\right) = \boxed{(6)}$$

として与えられる。

(5) の解答群

$$\checkmark \quad \frac{2\alpha + \beta}{5} \cdot 2^{n-1} \begin{pmatrix} 2\\1 \end{pmatrix} - \frac{\alpha - 2\beta}{5} \cdot 3^{n-1} \begin{pmatrix} -1\\2 \end{pmatrix}$$

ヴ
$$\frac{2\alpha+\beta}{5}\cdot 4^{n-1} \begin{pmatrix} 2\\1 \end{pmatrix} - \frac{\alpha-2\beta}{5}\cdot 9^{n-1} \begin{pmatrix} -1\\2 \end{pmatrix}$$

$$\text{I} \quad \frac{\alpha-2\beta}{5}\cdot 9^{n-1} \begin{pmatrix} 2\\1 \end{pmatrix} - \frac{\alpha+2\beta}{5}\cdot 4^{n-1} \begin{pmatrix} -1\\2 \end{pmatrix}$$

|5| 周期 2π の関数

$$f(x) = \begin{cases} -1 & (-\pi \le x < 0) \\ 1 & (0 \le x < \pi) \end{cases}, \quad f(x + 2\pi) = f(x)$$

について,次の問いに答えよ。

(1) 関数 f(x) のフーリエ級数は次のうちどれか。記号で答えよ。

$$7 \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1} \sin(2n-1)x \quad 7 \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin(2n-1)x$$

$$7 \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} \sin(2n+1)x \quad 7 \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n+1} \sin(2n+1)x$$

ウ
$$\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} \sin(2n+1)x$$
 エ $\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n+1} \sin(2n+1)x$

(2) (1) のフーリエ級数が収束する関数 g(x) は次のうちどれか。記号で答えよ。

$$\mathcal{T} \quad g(x) = \begin{cases} -1 & (-\pi < x < 0) \\ 0 & (x = 0, \pm \pi) \\ 1 & (0 < x < \pi) \end{cases}, \quad g(x + 2\pi) = g(x)$$

$$\mathcal{T} \quad g(x) = \begin{cases} -1 & (-\pi \le x < 0) \\ 0 & (x = 0) \\ 1 & (0 < x < \pi) \end{cases}, \quad g(x + 2\pi) = g(x)$$

$$\mathcal{T} \quad g(x) = \begin{cases} -1 & (-\pi < x < 0) \\ 0 & (x = \pm \pi) \\ 1 & (0 \le x < \pi) \end{cases}, \quad g(x + 2\pi) = g(x)$$

$$\mathcal{T} \quad g(x) = \begin{cases} -1 & (-\pi \le x < 0) \\ 1 & (0 \le x < \pi) \end{cases}, \quad g(x + 2\pi) = g(x)$$

$$\mathcal{T} \quad g(x) = \begin{cases} -1 & (-\pi \le x < 0) \\ 1 & (0 \le x < \pi) \end{cases}, \quad g(x + 2\pi) = g(x)$$

$$\mathcal{A} \quad g(x) = \begin{cases} -1 & (-\pi \le x < 0) \\ 0 & (x = 0) \\ 1 & (0 < x < \pi) \end{cases}, \quad g(x + 2\pi) = g(x)$$

ヴ
$$g(x) = \begin{cases} -1 & (-\pi < x < 0) \\ 0 & (x = \pm \pi) \\ 1 & (0 \le x < \pi) \end{cases}$$
 , $g(x + 2\pi) = g(x)$

$$\mathfrak{T} \quad g(x) = \left\{ \begin{array}{ll} -1 & (-\pi \le x < 0) \\ 1 & (0 \le x < \pi) \end{array} \right., \quad g(x + 2\pi) = g(x)$$

(3) 次の等式のうち正しいものはどれか。記号で答えよ。

$$7 \quad 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4} \qquad 7 \quad \frac{1}{3} - \frac{1}{5} + \frac{1}{7} - \dots = \frac{\pi}{4}$$

(計 算 用 紙)