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Abstract: In quantum field theories the Green functions are useful to extract the properties of
interaction between particles. We investigate the Green function for a massless boson defined on a
two-dimensional Euclidean lattice, and demonstrate numerical methods to obtain precise values of
the lattice Green function. The comparison with the continuum Green function exhibits a charac-
teristic difference at short distances, which is quantified approximately by an exponential function
as in the three dimensional case.
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1. Introduction

The Green functions, which we also call the prop-

agators, can be used to extract information on the in-

teraction between particles in quantum field theory.

In a D dimensional space, the Green function G(x) at

x = (x1, x2, ..., xD) is defined by the relation

∆G(x) = −δ(D)(x) , (1)

where ∆ is the Laplacian and δ(D)(x) the Dirac delta

function defined in the same D dimensional space.

A successful example of the use of propagators

can be found in quantum electrodynamics in four

spacetime dimensions. In this theory, the interaction

between electric charges is described by the exchange

of massless photons. The photon propagator in the

momentum space has the form 1/p2 with the momen-

tum pµ, and its Fourier transform in the three dimen-

sional space leads to the Green function of the form

G(x) = 1/(4π|x|) for the spatial distance |x|, which is

nothing but the Coulombic potential.

Another example is for the massive scalar field

theory, where the propagator in the momentum space

is modified to the form 1/(p2+m2) due to the mass of

particle m, and the corresponding potential is modi-

fied to be G(x) = e−m|x|/(4π|x|), which indicates that

the interaction range is limited to short distances of

|x| < 1/m due to the exponential factor e−m|x|. This

feature is, for instance, applied to describing the prop-

erties of short ranged weak interactions.

It should be noted that the common 1/|x| be-
havior in the above examples reflects the fact that the

space dimension is just three (cf. the Gauss law). In

other words, if the space dimension is not three, the

propagator shows a different behavior on |x|. In some

cases, the physical system has a certain symmetry on

—————
∗ Division of Liberal Arts

the spacetime or acquires such a spacetime symme-

try through dynamics, and then, the effective spatial

dimension is reduced. Thus, it is interesting to inves-

tigate the Green function in lower dimension, which

may be useful to clarify not only the properties of the

mediated particles, but also the underlying spacetime

symmetry in the system.

In this report, we present a part of our study

on the Green function in two dimensional space, in

particular, defined on a discrete lattice. This study

is continuation of our previous works in three dimen-

sions [1, 2]. In the continuum theory, it is known that

the Green function contains peculiar divergences both

at the origin and at long distances, which make it dif-

ficult to obtain precise values of the Green function

with a naive numerical manner. We shall investigate

how these divergences can be controlled on the lattice

with various numerical methods, and compare the lat-

tice result with the continuum one.

2. The lattice Green function

The lattice Green function G(x) for a massless

boson in the coordinate space is generally defined by

the relation

∆G(x) = −δx0 , (2)

where ∆ denotes the lattice Laplacian and δx0 is the

Kronecker delta, δx0 = 1 for x = 0 and δx0 = 0 for

x ̸= 0. In the two-dimensional Euclidean space D = 2,

the left-hand side of Eq. (2) is written as

∆G(x) =
2∑

µ=1

∇∗
µ∇µG(x) , (3)

where ∇µ and ∇∗
µ are the forward and backward dif-

ferences to a direction µ, respectively. Note that the

lattice spacing is assumed to be one in this report.
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The solution of Eq. (2) is formally obtained by

performing the Fourier transformation of the Green

function in the momentum space. On the lattice, the

momentum carried by a particle is defined by

p̂µ = 2 sin
pµ
2

, (4)

where pµ ∈ [−π, π]. The Green function for a massless

boson in the momentum space is then given by

G̃(p)=
1

p̂2
=

1

4
∑

µ sin
2 pµ

2

=
1

4− 2
∑

µ cos pµ
, (5)

and its Fourier transform is formally written as

G(x) =

∫ π

−π

d2p

(2π)2
eipxG̃(p) , (6)

where p x =
∑2

µ=1 pµxµ. This is rewritten by using

the modified Bessel function of the first kind In as

G(x) =

∫ ∞

0

dα e−4α
2∏

µ=1

Ixµ
(2α) , (7)

where In behaves as

In(2α) ∼
√

1

4πα
e2α (8)

for large α. It is clear that the integrand is of O(α−1),

and hence, the integral will diverge logarithmically.

Thus, it is not appropriate to proceed the numerical

integration of Eq. (7) before discriminating the diver-

gent part of the integral.

We then use the coordinate space method as

demonstrated in Refs. [3–5]. The crucial idea in this

method is based on Vohwinkel’s observation that the

lattice Green function satisfies a relation

(∇∗
µ +∇µ)G(x) = xµ

∫ π

−π

dDp

(2π)D
eipx ln(p̂2) (9)

in any D dimensions. Summing over all directions µ

in Eq. (9), one obtains a recursion relation,

G(x+µ̂) = G(x−µ̂)+
2xµ

ρ

D∑
ν=1

[G(x)−G∞(x−ν̂)] (10)

with ρ =
∑D

µ=1 xµ for ρ ̸= 0.

In two dimensions, Eq. (10) is reduced to

G(x+ µ̂) = G(x− µ̂)

+
2xµ

x1+x2
(2G(x)−G(x− 1̂)−G(x− 2̂)) , (11)

where G(x) is invariant under the permutation of x1

and x2 as

G(x1, x2) = G(x2, x1) , (12)

and the reflection around the origin at x = 0 as

G(x1, x2) = G(−x1, x2) = G(x1,−x2) . (13)

By using Eq. (11) and the above symmetries, we im-

mediately obtain

G(1, 0) = G(0, 0)− 1

4
. (14)

One may further find that the Green functions at other

positions are generally given by the linear combination

of G(0, 0) and G(1, 1), for instance,

G(2, 0) = 3G(0, 0)− 2G(1, 1)− 1 , (15)

G(3, 0) = 13G(0, 0)− 12G(1, 1)− 17

4
, (16)

G(4, 0) =
187

3
G(0, 0)− 184

3
G(1, 1)− 20 , (17)

and so on. We are then left with the task to determine

the value of G(0, 0) and G(1, 1).

For this purpose, we firstly define

g1(n) = G(n, 0) , g2(n) = G(n, 1) (18)

for n ∈ Z. The use of the Vohwinkel relation then

leads to two simultaneous recursion relations

g1(n+1)=4g1(n)− g1(n− 1)− 2g2(n) , (19)

g2(n+1)=
4ng2(n)

n+ 1
− (n−1)g2(n−1)

n+ 1
− 2ng1(n)

n+ 1
.(20)

For these g1 and g2, we find an interesting fact that

the combination of the form,

k(n) = (n− 1)g1(n) + ng2(n)

−ng1(n− 1)− (n− 1)g2(n− 1) , (21)

is invariant under the shift of n as

k(n+ 1) = n(4g1(n)− g1(n− 1)− 2g2(n))

+(n+ 1)(
4n

n+ 1
g2(n)−

n− 1

n+ 1
g2(n− 1)

− 2n

n+ 1
g1(n))− (n+ 1)g1(n)− ng2(n)

= 4ng1(n)− ng1(n− 1)− 2ng2(n)

+4ng2(n)− (n− 1)g2(n− 1)− 2ng1(n)

−(n+ 1)g1(n)− ng2(n)

= (n− 1)g1(n) + ng2(n)

−ng1(n− 1)− (n− 1)g2(n− 1)

= k(n) , (22)
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where we have used Eqs. (19) and (20). Since it is

natural to expect that the lattice Green function at

long distances behaves like the continuum one [5] such

as

G(x) = − 1

4π
(lnx2 + 2γ + 3 ln 2) (23)

with the Euler-Mascheroni constant γ = 0.577215...,

the invariant relation for a large n will be

k(n) → (n− 1)(− 1

4π
lnn2) + n(− 1

4π
ln(n2 + 1))

−n(− 1

4π
ln(n− 1)2)

−(n− 1)(− 1

4π
ln((n− 1)2 + 1))

→ − 1

π
. (24)

Therefore we conclude k(n) = −1/π for any value of

n ≥ 0. Inserting n = 1 to k(n), we find k(1) = g2(1)−
g1(0) = G(1, 1)−G(0, 0). Thus we obtain

G(1, 1) = G(0, 0)− 1

π
. (25)

It turns out that all Green functions now have a com-

mon constant value G(0, 0) as

G(2, 0) = G(0, 0) +
2

π
− 1 , (26)

G(3, 0) = G(0, 0) +
12

π
− 17

4
, (27)

G(4, 0) = G(0, 0) +
184

3π
− 20 , (28)

and so on. As the lattice Green function at long dis-

tances is expected to behave as in Eq. (23), the fi-

nite part of the G(0, 0) should correspond to (2γ +

3 ln 2)/(4π). On the other hands, the divergent part

has a structure similar to that in the complete elliptic

integral of the first kind K(s) with s → 1, which must

be renormalized properly.

In principle, the above recursion relations allow

us to obtain the Green function at any long distances.

However, since the convergence ratio at long distances

is not so small due to the logarithmic behavior of the

Green function, the accumulation of numerical errors

that originates from precision limits may affect the

result. For a large n, we have

G(n+1, 0)−G(n, 0) = − 1

2π
ln

n+ 1

n
≃ − 1

2πn
, (29)

which is of O(10−4) even at n = 1000. For comparison

the corresponding values are of O(10−7) and O(10−10)

in three and four dimensions, respectively.
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Fig. 1: The behavior of G(x) with the double and
quadruple-precision arithmetics, in comparison with the
continuum Green function Gc(x).

3. Numerical results

In Fig. 1, we show the Green function along the

x1 axis such as x = (n, 0), which is computed by us-

ing Fortran with the double- and quadruple-precision

arithmetics, respectively. The lattice results are com-

pared to the continuum Green function

Gc(x) = − 1

4π
lnx2 , (30)

As noted above, the difficulty arises for controlling

numerical errors at around n = 20 for the double-

precision arithmetic. Even if the quadruple-precision

arithmetic is used, available distance is limited to

around n = 40.

In order to overcome this problem, we propose

two alternatives. One is to resort to the arbitrary-

precision arithmetic computation, for instance, by us-

ing Python with the help of mpmath library [6]. The

other is to compute the Green function in a finite vol-

ume, but of course, its size should be large enough.

As the basic procedure of the former with Python is

the same as that with Fortran, we just add some ex-

planations for the latter.

In a finite volume with periodic boundary con-

ditions in all directions, the momentum pµ in Eq. (4)

is discretized as pµ = 2πnµ/Lµ with integers nµ =

0, 1, 2, ..., Lµ − 1, where the lattice volume is assumed

to be L1L2. The Green function in the momentum

space will be

G̃L(p)=
1

p̂2
=

1

4
∑

µ sin
2 pµ

2

=
1

4−2
∑

µ cos
2πnµ

Lµ

, (31)
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Fig. 2: The behavior of G(x) with the arbitrary-precision
arithmetic (keep 100 digits of precision) and of GL(x) (on
5122) with the double-precision arithmetic.
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Fig. 3: The difference of the lattice Green function and
the continuum one G(x)−Gc(x).

and the Fourier transform is

GL(x) =
1

L1L2

∑
nµ ̸=0

e
i
2πnµ
Lµ

xµG̃L(p) , (32)

which can be computed by using the FFT algorithm.

In Fig. 2, we show the two results, where the first

calculation is performed by keeping 100 digits of pre-

cision during the recurrence, while the second is done

with the lattice size of L1 ×L2 = 5122. In both cases,

computations are achieved within negligible time. Al-

though the computation for the finite volume Green

function is done by using Python with the SciPy li-

brary, we just stick to the normal double-precision

arithmetic. We find that both methods work quite

well. The available distance can easily be increased if

needed.

As far as Fig. 2 is looked at, it seems that the lat-

tice Green function completely coincides with the con-

tinuum one. However, Fig. 3 indicates that this is not

the case especially at short distances of x ≤ 7, where

the difference between the lattice Green function and

the continuum one, G(x) − Gc(x), is plotted. A chi-

square fitting analysis for the difference indicates that

it approximately obeys an exponential function

f(|x|) = 0.017(1)e−0.70(3)|x| . (33)

Note that this tendency is quite the same as in three

dimensions [1, 2]. If we take the resulting fitting pa-

rameter seriously, the absolute value of the coefficient

of |x| in the exponential function 0.70(3) is slightly

smaller than that in three dimension 0.84(2) [1], sug-

gesting that the lattice cutoff effect tends to be en-

hanced in lower dimensions.

4. Summary

We have investigated the lattice Green functions

for a massless boson in two-dimensional Euclidean

space. We have demonstrated several numerical meth-

ods to obtain precise values of the lattice Green func-

tion. The comparison with the continuum Green func-

tion indicates that the lattice results at short distances

contain a characteristic difference from the continuum

one as quantified by an exponential function, which

seems to have the same structure as in the three-

dimensional space [1, 2].
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