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Abstract: The Green functions characterize interaction properties between particles in quantum
field theories. We evaluate the Green functions for a massive scalar boson defined on a three-
dimensional Euclidean lattice numerically, and investigate the lattice effect by comparison with
the continuum Green function. We again find a characteristic difference at very short distances
quantified approximately by an exponential function as in the massless case.

Key Words: Green function, Propagator, Lattice formulation

1. Introduction

Formulating a quantum field theory on a dis-

cretized spacetime, which we call the lattice formu-

lation in short, regularizes the continuum theory that

has an infinite number of degrees of freedom with a

finite number of them. In this formulation, field vari-

ables of the theory are treated as a finite number of

site or link variables, and then, it is possible to solve

the field equations by using a kind of finite difference

methods or to compute the partition function of the

theory by using the Monte-Carlo method. A weak

point, however, may be that the numerical results al-

ways suffer from systematic errors due to finite cutoff

and finite volume even if one obtains precise results.

This is because one cannot perform computation prac-

tically in infinite volume with infinitesimally small lat-

tice spacing. Therefore, it is important to control the

lattice artifacts in the numerical results.

The evaluation of the Green functions defined

on the lattice, which we call the lattice Green func-

tions, may provide us with some hints for controlling

the lattice effect. The Green functions play the role

of propagators in quantum field theories, which con-

tain information on the interaction properties between

particles. For instance, when a massless boson, such

as the photon in quantum electrodynamics, carries a

continuum momentum pµ, its propagator in the mo-

mentum representation is given by 1/p2, which corre-

sponds to the well-known Coulombic potential ∝ 1/r

in the coordinate representation. On the lattice, how-

ever, the momentum is discretized and its range is also

restricted due to finiteness of the lattice spacing and

the volume, which should affect the behavior of the

Green function. Thus, the comparison of the lattice
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results with the continuum one will help to expose the

lattice artifacts.

Previously, we investigated the lattice Green

function for the massless boson defined on a three-

dimensional Euclidean lattice numerically and com-

pared the results with the continuum one [1]. We

then found a characteristic difference at very short

distances, which is quantified approximately by an ex-

ponential function. As we mentioned, the remnant of

such an exponential behavior may cause a problem

when a theory that can generate a mass dynamically

is analyzed, since the effect of the mass usually ap-

pears as an exponential function.

In the present report, we extend our previous

work to the case that a propagating particle has a

finite mass m. More specifically, we investigate the

lattice Green functions for a free massive scalar boson

in three-dimensional Euclidean space. In the contin-

uum theory, it is known that the particle obeys the

Klein-Gordon equation, so that the propagator with

the momentum pµ is given by 1/(p2 + m2) and the

Fourier transformation leads to the Yukawa potential

∝ e−mr/r. We shall compare the lattice results with

this continuum behavior.

2. The lattice Green functions

In the continuum theory, the Green function

G(x;m) for a massive scalar boson is defined by the

relation

(−∆+m2)G(x;m) = δ(x) , (1)

where ∆ denotes the Laplacian and δ(x) the Dirac

delta function. The solution of Eq. (1) in the n-

dimensional space can be obtained by performing the

Fourier transformation of the Green function in the
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momentum representation 1/(p2 +m2) as

G(x;m) =

∫ ∞

−∞

dnp

(2π)n
eipx

p2 +m2
, (2)

where p2 =
∑n

µ=1 pµpµ, ipx = i
∑n

µ=1 pµxµ. By using

the integral formula F−1 =
∫∞
0

dαe−αF , the Fourier

transformation is carried out as [2]

G(x;m) =

∫ ∞

0

dα

∫
dnp

(2π)n
eipxe−α(p2+m2)

=

∫ ∞

0

dα e−αm2
n∏

µ=1

∫ ∞

−∞

dpµ
2π

e−α(pµ−
ixµ
2α )2−

x2
µ

4α

=

∫ ∞

0

dα e−αm2

(
1

2π

)n (π
α

)n
2

e−
x2

4α

=
1

(2π)
n
2

(m
r

)n
2 −1

Kn
2 −1(mr) , (3)

where the final expression is based on the integral for-

mula of the modified Bessel function of the second

kind

Kν(z) =
1

2

(z
2

)ν
∫ ∞

0

dt e−t− z2

4t t−ν−1 (ν ∈ R) . (4)

Therefore, for the n = 3 case the Green function is

reduced to the well-known Yukawa potential

G(x;m) =
1

(2π)
3
2

(m
r

) 1
2

K 1
2
(mr) =

e−mr

4πr
, (5)

where K1/2(z)=
√
π/(2z) e−z is used.

On the lattice in infinite volume, the Green func-

tion G∞(x;m) should satisfy

(−∆+m2)G∞(x;m) = δx0 , (6)

where ∆ =
∑n

µ=1 ∇∗
µ∇µ denotes the lattice Laplacian,

which is a combination of the forward and backward

differences, so that ∆f(x) =
∑n

µ=1[f(x + µ̂) + f(x −
µ̂)− 2f(x)], and δx0 is the Kronecker delta, satisfying

δx0 = 1 for x = 0 and δx0 = 0 for x ̸= 0. The

momentum carried by a particle is defined by p̂µ =

2 sin(pµ/2), where pµ ∈ [−π, π]. The lattice spacing is

set to be one throughout this report. Note that due

to hypercubic symmetry, the lattice Green functions

near the origin satisfy a relation

(2n+m2)G∞(0;m)− 2nG∞(µ̂;m) = 1 . (7)

The Fourier transformation is carried out similarly as

G∞(x;m) =

∫ π

−π

dnp

(2π)n
eipx

p̂2 +m2

=

∫ π

−π

dnp

(2π)n
eipx

4
∑n

µ=1 sin
2(pµ/2) +m2

=

∫ ∞

0

dα e−(2n+m2)α

×
n∏

µ=1

∫ π

−π

dpµ
2π

e2α cos pµ+ipµxµ

=

∫ ∞

0

dα e−(2n+m2)α
n∏

µ=1

Ixµ(2α) , (8)

where the final expression is based on the integral for-

mula of the modified Bessel function of the first kind

Iν(z) =
1

π

∫ π

0

dθez cos θ cos νθ (ν ∈ Z) . (9)

Since the integration over α cannot be carried out

analytically, one may resort to numerical integra-

tion. The convergence property of this integration,

however, is expected to be quite slow for large α,

due to the behavior of the modified Bessel function

Iν(2α) ∼
√

1/(4πα)e2α for large α. In fact, the inte-

grand will be of O(α−n/2) and this asymptotic behav-

ior indicates that it may be difficult to obtain precise

numerical values for lower dimensions n ≤ 3 except

for the large mass cases.

For the massless case with n = 4, 3, 2, this prob-

lem is solved [3–5]. If one applies to a similar method,

the procedure is modified as in Ref. [6] with a relation

(∇∗
µ+∇µ)G∞(x;m)=xµ

∫ π

−π

dnp

(2π)n
eipx ln(p̂2+m2) . (10)

Inserting Eq. (10) into Eq. (6) for x ̸= 0, one obtains

a recursion relation

G∞(x+ µ̂;m) = G∞(x− µ̂;m)

+
2xµ

ρ

n∑
ν=1

[(1 +
m2

2n
)G∞(x;m)−G∞(x− ν̂;m)] (11)

with ρ =
∑n

µ=1 xµ for ρ ̸= 0. We do not proceed

further this method in this report, but examine if the

numerical result satisfies the relation in Eq. (6).

On the lattice in finite volume of the size V =∏n
µ=1 Lµ, where periodic boundary conditions are im-

posed in all µ directions, the Green function GL(x;m)

should satisfy the same relation as in Eq. (6), but the

2
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Table 1: The lattice Green functions for m = 0.50 in infinite volume and in finite volume of V = 243.

r G∞(r;m) G∞(r;m)−G∞(0;m) GL(r;m) GL(r;m)−GL(0;m)

0 2.111547903170267×10−1 0 2.111549304663567×10−1 0

1 5.328623991356951×10−2 −1.578685504034572×10−1 5.328638590245488×10−2 −1.578685445639018×10−1

2 1.708696890778575×10−2 −1.940678214092410×10−1 1.708713461306398×10−2 −1.940677958532927×10−1

3 6.642001737189745×10−3 −2.045127885798370×10−1 6.642208288145088×10−3 −2.045127221782116×10−1

4 2.934166508491701×10−3 −2.082206238085350×10−1 2.934449547507940×10−3 −2.082204809188487×10−1

5 1.402515601993884×10−3 −2.097522747150329×10−1 1.402937062890787×10−3 −2.097519934034659×10−1

6 7.042904660635528×10−4 −2.104504998509632×10−1 7.049587589070812×10−4 −2.104499717074496×10−1

7 3.654127104022456×10−4 −2.107893776066245×10−1 3.665181733324653×10−4 −2.107884122930242×10−1

8 1.940082167762876×10−4 −2.109607821002504×10−1 1.958861987254369×10−4 −2.109590442676312×10−1

9 1.047841774237187×10−4 −2.110500061396030×10−1 1.080283405645461×10−4 −2.110469021257921×10−1

10 5.735009830886571×10−5 −2.110974402187179×10−1 6.301773058981373×10−5 −2.110919127357669×10−1

11 3.172329212786405×10−5 −2.111230670248989×10−1 4.171101085926890×10−5 −2.111132194554974×10−1

12 1.770079724664004×10−5 −2.111370895197801×10−1 3.544003416786985×10−5 −2.111194904321888×10−1

momentum is modified to pµ(k) = 2πlµ(k)/Lµ with

integers lµ(k) = 0, 1, 2, ..., Lµ − 1, reflecting the pe-

riodicity GL(x;m) = GL(x + Lµµ̂;m). The Fourier

transformation is then given by summation instead of

integration as

GL(x;m) =
1

V

∑
k

e
i
∑n

µ=1

2πlµ(k)

Lµ
xµ

4
∑n

µ=1 sin
2(

πlµ(k)
Lµ

) +m2
. (12)

In contrast to the massless case, there is no need to

remove the zero momentum mode. The summation

over all momenta is easily achieved by using a FFT

algorithm. When the lattice volume is isotropic such

as Lµ = L for all µ directions, the relation like in

Eq. (7) holds for GL due to hypercubic symmetry.

3. Numerical results

We shall present numerical results in three di-

mensions. Since our aim is to reveal the lattice effects

in the lattice Green function, we first focus on the dif-

ference of the lattice Green functions in infinite and

finite volumes, where the mass is set to be m = 0.50

as an example.

In Table 1, we show the numerical values of

Eq. (8) evaluated by using Wolfram Mathematica,

and of Eq. (12) obtained by using a FFT algorithm

of SciPy on the V = 243 lattice, both along the on-

axis x = (r, 0, 0). An interesting observation is that

G∞(r;m) and GL(r;m) are quite similar with each

other. If one looks at the numerical values in Table 1

carefully, however, one may notice that there is a small
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Fig. 1: The normalized lattice Green function in infinite
volume Ĝ∞(r;m) and in finite volume ĜL(r;m)(upper),

and the difference ĜL(r;m)− Ĝ∞(r;m) (lower).

discrepancy, which seems to increase gradually with

the distance r. The reason will be obvious by plotting

the numerical values of various lattice volumes for all

range of r ∈ [0, L] as shown in Fig. 1. The systematic

increase of the difference just reflects the periodicity

3
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Fig. 2: The lattice Green function in infinite volume
G∞(r;m) and the continuum Green function G(r;m) =
e−mr/(4πr) (upper), and the difference G∞(r;m) −
G(r;m) (lower).

of the lattice in finite volume. This means that it can

easily be controlled by taking a reasonably large lat-

tice volume. Thus, in order to investigate the lattice

effect based on comparison with the continuum Green

function, either type of the lattice Green functions can

be used (of course, the lattice volume should appro-

priately be large when the finite volume one is used).

Note for the massless case that the coincidence of the

lattice Green function in infinite and finite volumes

can be observed only for the normalized one [1].

We then compare the lattice Green function in

infinite volume G∞(r;m) and the continuum Green

function G(r;m) = e−mr/(4πr) in Fig. 2. In the con-

tinuum case, the Green function at the origin is diver-

gent due to the 1/r behavior, so that we pay attention

to the range for r ≥ 1. We find that both lattice and

continuum Green functions show a similar behavior

with an exponential suppression for r, and only at

very short distances for r ≤ 5 there appears a charac-
teristic difference by about ten percent. A chi-square

fitting analysis for the difference G∞(r;m)−G(r;m)

indicates that this approximately obeys an exponen-

tial function

f(r) = 0.0119(3)e−0.85(2)r . (13)

What is remarkable is that the functional form and

the fitting parameters are quite similar to that in the

massless case [1]. We note that if we assume the func-

tional form of the G∞(r;m) as of the continuum one,

p1e
−p2r/r, and perform chi-square fitting analyses, the

parameter corresponding to the mass, p2, can be ap-

propriate only when we neglect the data at short dis-

tances, such that p2 = 0.5009(4) for 6 ≤ r ≤ 20, while

p2 = 0.535(2) for 2 ≤ r ≤ 20.

4. Summary

We have investigated the lattice Green function

for a scalar massive boson numerically both in finite

and infinite volumes in three-dimensional Euclidean

space. Our results again exhibit a characteristic differ-

ence from the continuum Green function at very short

distances for r ≤ 5, which is quantified by using an ex-

ponential function as in the massless case. Thus, one

should be careful to use the continuum Green function

to extract physical parameters such as a mass from

the lattice result when only the short distance data

is available. The origin of the exponential difference

need to be investigated further.

The author is grateful to Miho Koma for fruitful
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