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Abstract: The Green functions take the roles of propagators in quantum field theories, which
provide information on the interaction between particles. We evaluate the Green functions for a
massless boson defined on a three-dimensional Euclidean lattice numerically, and investigate the
lattice effects by comparing the results with the continuum ones. We find an inevitable difference
at very short distances quantified approximately by an exponential function.
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1. Introduction

Revealing the properties of quantum field theo-

ries often requires numerical methods, and a lattice

formulation of spacetime offers a powerful method for

this purpose. In this formulation, field variables of a

theory are treated as the site or link variables, which

allows us not only to solve the field equations by using

numerical algorithms but also to compute the parti-

tion function that contains the quantum effects by us-

ing the Monte-Carlo method. Only the caveat may be

that the numerical results obtained in this way suffer

from systematic errors due to finite cutoff and finite

volume. This is because one cannot perform computa-

tion practically in infinite volume with infinitesimally

small lattice spacing. Therefore, it is always impor-

tant to control the lattice artifacts in the numerical

results.

The evaluation of the Green functions defined

on the lattice, which we call the lattice Green func-

tions, may give some hints. The Green functions take

the roles of propagators in quantum field theories,

which provide information on the interaction between

particles. For a massless boson, such as the photon

in quantum electrodynamics, carrying momentum pμ,

the propagator is given by 1/p2 in the momentum rep-

resentation, and the Fourier transform corresponds to

the well-known Coulombic potential ∼ 1/r. If one

dares to compute the same propagator and potential

on the lattice, however, the results could be different

from those in the continuum and infinite volume limits

in some respects. Thus, the comparison of the lattice

results with the continuum ones that can be obtained

analytically will be useful to expose the lattice arti-

facts.
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In this report, we present part of our numerical

results on the behavior of the lattice Green functions

for a massless boson in three-dimensional Euclidean

space both in finite and infinite volumes. We then

compare these results with those in the continuum

theory. We partially resort to the coordinate space

method to evaluate the lattice Green functions in in-

finite volume as demonstrated in [1–3].

2. The lattice Green functions

The lattice Green function for a massless bo-

son in infinite volume in the coordinate representation

G∞(x) is generally defined by the equation

ΔG∞(x) = −δx0 , (1)

where Δ denotes the lattice Laplacian and δx0 is the

Kronecker delta, δx0 = 1 for x = 0 and δx0 = 0 for

x �= 0. In the N -dimensional Euclidean space, the

left-hand side of Eq. (1) is written as

ΔG∞(x)=
N∑

μ=1

∇∗
μ∇μG∞(x)

=
N∑

μ=1

[G∞(x+μ̂)+G∞(x−μ̂)−2G∞(x)] ,(2)

where∇μ and∇∗
μ are the forward and backward differ-

ences to a direction μ, respectively. The lattice spac-

ing is set to one throughout this report.

The solution of Eq. (1) is formally obtained by

performing the Fourier transformation of the Green

function in the momentum representation. On the

lattice, momentum carried by a particle is defined by

p̂μ = 2 sin
pμ
2

, (3)

where pμ ∈ [−π, π]. With this lattice momentum the

Green function in the momentum representation is

given by

G̃∞(p)=
1

p̂2
=

1

4
∑

μ sin
2 pμ

2

=
1

2N − 2
∑

μ cos pμ
, (4)
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and the Fourier transform is

G∞(x) =

∫ π

−π

dNp

(2π)N
eipxG̃∞(p) , (5)

where p x =
∑N

μ=1 pμxμ.

In finite volume with periodic boundary condi-

tions in all directions, pμ in Eq. (3) is discretized as

pμ = 2πnμ/Lμ with integers nμ = 0, 1, 2, ..., Lμ − 1.

The Green function in the momentum representation

is then given by

G̃L(p)=
1

p̂2
=

1

4
∑

μ sin
2 pμ

2

=
1

2N−2
∑

μ cos
2πnμ

L

, (6)

and the Fourier transform is

GL(x) =
1

V

∑
nμ �=0

e
i
2πnμ
Lμ

xμG̃L(p) , (7)

where V =
∏N

μ=1 Lμ. In order to avoid divide-by-zero

computation, one may exclude the zero momentum

mode nμ = 0 for all μ reluctantly, which yields a finite

volume correction in Eq. (1) as

ΔGL(x) = −δx0 +
1

V
. (8)

The Fourier transformation of G̃L(p) is easily

achieved by using the FFT algorithm, while that

of G̃∞(p) needs subtle approach. One may rewrite

Eq. (5) by using the modified Bessel functions In as

G∞(x) =

∫ ∞

0

dα e−2Nα
N∏

μ=1

Ixμ
(2α) , (9)

and evaluate this integral numerically. However, the

convergence property of the integration depends on

the spatial dimension N , since the modified Bessel

function behaves as

In(2α) ∼
√

1

4πα
e2α (10)

for large α, where the integrand will be of O(α−2) for

N = 4, O(α−3/2) for N = 3, and O(α−1) for N = 2.

These asymptotic behaviors indicate that it may be

difficult to obtain precise numerical values for lower

dimensions N ≤ 3 as the convergence is expected to

be slow.

An interesting way to avoid the convergence

problem is to use the coordinate space method as

demonstrated in Refs. [1–3]. According to Ref. [1],

the idea is based on Vohwinkel’s observation that the

lattice Green function satisfies a relation

(∇∗
μ+∇μ)G∞(x) = xμ

∫ π

−π

dNp

(2π)N
eipx ln(p̂2) . (11)

Summing over all directions μ in Eq. (11), one obtains

sort of a recursion relation

G∞(x+μ̂) = G∞(x−μ̂)+
2xμ

ρ

N∑
ν=1

[G∞(x)−G∞(x−ν̂)]

(12)

with ρ =
∑N

μ=1 xμ for ρ �= 0.

In three dimension [2], the direct evaluation of

Eq. (1) at the origin leads to

G∞(1, 0, 0) = G∞(0)− 1

6
, (13)

where G∞(0) = G∞(0, 0, 0). The same relation also

applies to G∞(0, 1, 0) and G∞(0, 0, 1) due to cubic

symmetry. Moreover, the combination of the Green

functions,

k(n) = (n−1)G∞(n, 0, 0) + 2nG∞(n, 1, 0)

+(n+1)G∞(n, 1, 1)− nG∞(n−1, 0, 0)

−2(n−1)G∞(n−1, 1, 0)−(n− 2)G∞(n−1, 1, 1) , (14)

is found to be a constant of motion, satisfying k(n +

1) = k(n) for n ≥ 1, and the behavior of the Green

functions at n → ∞ leads to k(n) = 0. By setting

n = 1 in Eq. (14), one further obtains a relation

G∞(1, 1, 1) =
1

2
(G∞(0)− 3G∞(1, 1, 0)) . (15)

Likewise the Green functions at any distances can be

expressed as

G∞(x) = r1(x)G∞(0)+r2(x)G∞(1, 1, 0)+r3(x) , (16)

where r1(x), r2(x), and r3(x) are rational numbers

determined recursively by using Eq. (12).

The two inputs G∞(0) and G∞(1, 1, 0) in

Eq. (16) are also computed from the recursion re-

lation itself. In Table 1, we show the values of

G∞(0) and G∞(1,1,0) obtained by solving simulta-

neous equations for G∞(n, 0, 0) and G∞(n, 1, 0) at

long distances n → ∞, which are expected to be-

have as G∞(n, 0, 0) ∼ 1/(4πn) and G∞(n, 1, 0) ∼

2
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Table 1: The G∞(0) and G∞(1, 1, 0) determined by setting the maximum number n.

n G∞(0)

20 0.2527310098586630026512899780573065761804420557026865017

40 0.2527310098586630030260020266135700840185454806081835215

60 0.2527310098586630030260020266135701299925645074087004469

n G∞(1, 1, 0)

20 0.0551914336877373167861103588492548550092182265478188015

40 0.0551914336877373170165449460300639096093757534683259826

60 0.0551914336877373170165449460300639378812455101391984498

1/(4π
√
n2 + 1), respectively. Clearly, the values show

convergence for large n. The presented values seem to

be unnecessarily lengthy, but they should be as pre-

cise as possible in order to reduce accumulation of

rounding errors during the numerical recurrence. If

it is possible to perform computation with quadruple

precision, the values determined at n = 40 can be

used, where the difference of the lattice Green func-

tion from the continuum one at n = 40 is expected to

be of O(1/n2) ∼ 10−3. It is interesting to note that

the value of G∞(0) determined in this way agrees with

the half of the Watson integral I3 [4, 5],

G∞(0) =
I3
2

=

(√
3− 1

)
Γ
(

1
24

)2
Γ
(
11
24

)2
192π3

. (17)

3. Numerical results

We shall present numerical results in three di-

mensions. In the continuum case, the Green function

at the origin is divergent due to the 1/r behavior. In

contrast, the lattice Green function at the origin is

always finite both in finite and infinite volumes. In

Fig. 1, we plot the values of GL(0) as a function of L,

where the dotted line corresponds to G∞(0). We find

that GL(0) depends on the size L, which approaches

G∞(0) from below as the size L is increased.

In Fig. 2, we plot the on-axis lattice Green func-

tions both in finite and infinite volumes, GL(r) ≡
GL(r, 0, 0) and G∞(r) ≡ G∞(r, 0, 0), which are com-

pared with the continuum Green function G(r) =

1/(4πr). The G∞(r) seems to be identical to G(r)

except for the distances near the origin, while GL(r)

are clearly different from G(r) and are dependent on

the size L. Although GL(r) approaches G(r) gradu-

ally as the size L is increased, there still seems to be
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L

GL(0)

G∞(0)

Fig. 1: The behavior of GL(0) as a function of L, which is
compared with G∞(0) (dotted line).

a constant gap even after taking the limit L → ∞.

As shown in Fig. 3, however, we find that once

the values at the origin are subtracted from the lat-

tice Green functions, they seem to fall into one curve

corresponding to G(r)−G∞(0). We look at the differ-

ence between them carefully in Fig. 4, which clearly

shows that the difference tends to disappear as the

size L is increased. Only at very short distances for

r ≤ 5 there is an inevitable difference. A chi-square

fitting analysis for the infinite volume data indicates

that the difference approximately obeys an exponen-

tial function

f(r) = 0.0151(3)e−0.84(2)r . (18)

In finite volume, Eq. (13) is modified to

GL(1, 0, 0) = GL(0)− 1

6
(1− 1

V
) , (19)

where the finite volume correction originates from the

removal of the zero momentum mode as already ex-

plained. Thus, the ratio of GL(1)−GL(0) to G∞(1)−
G∞(0) is just given by 1 − 1/V . For L = 16 it gives

0.9998, so that the relative error is only of 0.02 %.

3
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Fig. 2: The behaviors of the lattice Green functions
GL(r) and G∞(r), which are compared with the contin-
uum Green function G(r) = 1/(4πr).
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Fig. 3: The behaviors of the normalized lattice Green func-
tions, where the values at the origin are subtracted.
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Fig. 4: The difference between the normalized lattice
Green functions and the normalized continuum Green
function.

Although analytical relations between GL(r)−GL(0)

and G∞(r)−G∞(0) for r ≥ 2 are not known yet, the

results at small r in Fig. 4 indicate that the finite vol-

ume effect at short distances can easily be controlled.

Whether or not one can control the finite volume ef-

fect at long distances depends on available computer

resources. The results suggest that the size L should

be taken at least four times larger than the distance

of interest, since the effect of periodic boundary con-

ditions appears around the distances of L/4.

On the other hand, the control of the finite cutoff

effect as characterized by Eq. (18) may cause prob-

lem when one aims to clarify short-distance proper-

ties with massive particles. In a quantum field the-

ory that the propagator is given by 1/(p2 +m2) with

mass m, the Fourier transform corresponds to the

Yukawa-type potential ∼ e−mr/r. In this case, the

exponential function e−mr certainly reflects a physical

effect. What is complicated is that, in some of quan-

tum field theories, masses are dynamically generated

by the quantum effects. If this is the case, the discrim-

ination of the finite cutoff effect is crucial, which will

require systematic investigation including the scaling

analysis.

4. Summary

We have investigated the lattice Green functions

for a massless boson numerically both in finite and in-

finite volumes in three-dimensional Euclidean space.

The presented results exhibit an inevitable difference

from the continuum Green function at very short dis-

tances for r ≤ 5, which is quantified by using an ex-

ponential function. Similar analyses can be performed

also on the off-axis lattice Green functions. The con-

trol of the short-distance effect in our actual lattice

computation [6] is in progress.

The author is grateful to Miho Koma for fruitful

collaboration.
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