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Abstract: The dual Abelian Higgs (DAH) model is one of the nonperturbative effective models
of quantum chromodynamics for strong interaction inside hadrons. The DAH model possesses a
classical string-like flux-tube solution, which can be applied to explaining the quark confinement
mechanism. We study the flux-tube solution in the DAH model in two-dimensional space by solving
the field equations numerically, and present some of selected results of the solution.
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I. INTRODUCTION

Quarks and gluons are ingredients of hadrons,

and their dynamics is believed to be described by

quantum chromodynamics (QCD), a quantum gauge

field theory of SU(3) gauge symmetry. However, the

investigation of QCD requires nonperturbative meth-

ods due to strong nature of the interaction. One

of the nonperturbative methods is to change QCD

to a weakly interacting theory by applying dual-

ity transformation. The dual Abelian Higgs (DAH)

model [1, 2], which we deal with in this report, is con-

structed in such a way [3]. It is then possible to tackle

some of the nonperturbative properties of QCD based

on classical solutions of the DAH model.

The Lagrangian density of the DAH model is

given by

L =
1

4
∗F 2

μν + |(∂μ + igBμ)χ|2 + λ(|χ|2−v2)2 , (1)

where Bμ(x) and χ(x) are the axial-vector dual gauge

field and the complex-scalar Higgs field, respectively,

and

∗Fμν = ∂μBν − ∂νBμ − e

2
Σμν (2)

is the dual field strength tensor. The model is invari-

ant under the U(1) dual gauge transformation, Bμ →
Bμ − ∂μξ , χ → χeiξ , and χ∗ → χ∗e−iξ. The strength

of the interaction is controlled by the dual gauge cou-

pling g and the Higgs self coupling λ, where g satisfies

the Dirac quantization condition (e/2)g = 2π with the

color-electric charge e/2. An important feature is that

the strong coupling with respect to e is now changed

to the weak coupling g. The Higgs condensate v is

related to the physical scale of the DAH model. The
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theoretical structure of the DAH model is quite the

same as the Ginzburg-Landau (GL) model for describ-

ing ordinary superconductor except for the presence of

the Dirac string Σμν . In the DAH model, Σμν leads

to a string-like flux-tube solution corresponding to the

Abrikosov vortex in the GL model [4].

In this report, we present some of selected re-

sults of the flux-tube solution in the DAH model in

two-dimensional space obtained by solving the field

equation numerically.

II. THE NUMERICAL PROCEDURES

For the numerical method it is useful to isolate

the physical scale from the model. In practice, we may

introduce dimensionless variables with carets by

gBμ ≡ vB̂μ , χ ≡ vχ̂ = v(φ̂1 + iφ̂2) ,

∂μ ≡ v∂̂μ , xμ ≡ v−1x̂μ , Σμν ≡ v2Σ̂μν . (3)

The action of the DAH model in two-dimensional

space is then written as

S = βv2
∫
d2x̂

[
1

4
∗F̂ 2

μν +
m̂2

B

2
(D̂μφ̂a)

2

+
m̂2

Bm̂
2
χ

8
(φ̂2

a − 1)2
]
, (4)

where

∗F̂μν = ∂̂μB̂ν − ∂̂νB̂μ − 2πΣ̂μν , (5)

D̂μφ̂a = ∂̂μφ̂a − �abB̂μφ̂b . (6)

�ab in the covariant derivative in Eq. (6) is the 2nd-

rank antisymmetric tensor (�12 = −�21 = 1, �11 =

�22 = 0). The repeated Greek and Latin indices are to

be summed over from one to two. Three parameters

g, λ, and v in Eq. (1) are now translated to the inverse

square of the dual gauge coupling β = 1/g2, and the

masses of the dual gauge field and the Higgs field,

mB =
√
2gv ≡ m̂Bv , mχ = 2

√
λv ≡ m̂χv . (7)

41沼津工業高等専門学校研究報告
第55号，2021年1月



We further formulate the DAH model in Eq. (4)

on the dual lattice. We consider the lattice volume of

the size L2 ≡ LxLy, and set the lattice spacing a =

v−1, where periodic boundary conditions are imposed

in both x and y directions. We may set a = 1 and

recover the physical scale whenever needed. Then,

the action of the DAH model has the form

σ =
∑
�x

s(�x) (8)

with

s(�x) = β

[
1

4
∗Fμν(�x)

2 +
m2

B

2
(Dμφi(�x))

2

+
m2

Bm
2
χ

8

(
φi(�x)

2 − 1
)2
]
, (9)

where we have omitted all carets for simplicity. Al-

though we use argument �x to express space coordi-

nates as in a continuum theory, it should be regarded

as discretized site variables. On the lattice, we may

write the dual field strength tensor as the noncompact

plaquette variables,

∗Fμν(�x) = Bμ(�x) +Bν(�x+ μ̂)−Bμ(�x+ ν̂)−Bν(�x)

−2πΣμν(�x) . (10)

The lattice version of the covariant derivative becomes

Dμφi(�x) = φi(�x)− φi(�x+ μ̂) cosBμ(�x)

+�ijφj(�x+ μ̂) sinBμ(�x) . (11)

If we put a single Dirac string on the two-dimensional

plane, we will obtain a flux-tube solution. In this case,

σ corresponds to the energy of the flux tube per unit

length, which we may call the string tension. s(�x) is

then regarded as the energy density at an arbitrary

location of �x = (x, y).

The field equations for the dual gauge field Bμ(�x)

and the Higgs field φi(�x) are given by

∂V

∂Bμ(�x)
= βm2

BXμ(�x) = 0 (μ = 1, 2) , (12)

∂V

∂φi(�x)
= βm2

BYi(�x) = 0 (i = 1, 2) . (13)

We solve these field equations simultaneously so as to

satisfy Xμ(�x) = 0 and Yi(�x) = 0. We use the Newton-

Raphson method for this purpose. An advantage of
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FIG. 1: History of the string tension σ as a function of
iteration step for β = 1 and mB = mχ = 0.50 with Nq = 1.
The dotted line corresponds to the convergence value of
σ = 3.1232... for � = 10−4.
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FIG. 2: Histories of the maximum residual of the field
equations max(|Xμ(x)|) and max(|Yi(x)|) as a function of
iteration step for β = 1 and mB = mχ = 0.50 with Nq = 1.
The dotted line is the required level of the residual.

the dual lattice formulation is that it is quite easy to

investigate the flux-tube system; one just sets nonzero

integer values for Σμν at any desired locations.

III. THE NUMERICAL RESULTS

As a demonstration of our numerical method, let

us put a single Dirac string with the quark charge

Nq = 1 at the center of lattice �x = (Lx

2 ,
Ly

2 ), and solve

the field equations with the parameters β = 1 and

mB = mχ = 0.50 on the lattice size L2 = 322. The

so-called GL parameter is given by κ ≡ mB/mχ = 1,

which corresponds to just the border of the type-I and

type-II superconducting phases [5].

In Figs. 1 and 2, we first show the string tension

2
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FIG. 3: The profiles of the electric field E = ∗F12 (upper),

the Higgs field φ =
√

φ2
1+φ2

2 (middle), and the action
density s (lower).
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FIG. 4: The profile of the supercurrent kμ

and the residual of the field equation as a function of

the iteration step of the Newton-Raphson method. In

this computation, we have set the convergence crite-

rion of the field equations to be |Xμ| < � and |Yi| < �

with � = 10−4. We find that although both the maxi-

mum residuals of the field equations gradually reduce

to the desired level of �, the string tension quickly

converges with the final value. Note that we look at

these quantities whenever the new mass parameters

and the lattice volume are set. Our examination ex-

hibits that � = 10−4 is already small enough to regard

the obtained result as the final solution.

It is possible to compute the analytical contin-

uum value of the string tension at κ = 1 [5]; it becomes

σ/(βNqm
2
B) = π. The relative error of the numerical

value of the string tension is evaluated as

Δσ

σ
=

|π − 3.1232...|
π

� 0.0058 . (14)

This value can further be smaller when the large vol-

ume limit and the continuum limit are taken into ac-

count.

In Fig. 3, we then plot the profile of the electric

field, the Higgs field, and the action density. In Fig. 4,

we also plot the profile of the supercurrent

kμ(x) = −m2
B{φi(x)φi(x+ μ̂) sinBμ(x)

+�ijφi(x)φj(x+ μ̂) cosBμ(x)} . (15)

It is clear that the peak structure of the electric field

and the action density as well as the vortex structure

of the supercurrent exhibit the presence of the flux

tube. Note that the obtained field profiles coincide

with that of the cylindrical solution as presented in

our previous report [6].

The advantage of the present method is that we

can examine various type ofmulti flux-tube systems by

putting the multi Dirac strings on a two dimensional

plane. The iteration process naturally finds the energy

minimum solution for the given total number of Nq.

Let us then demonstrate the usefulness of the method

by investigating the two-body flux-tube system. We

may put two Dirac strings with the quark charge

Nq = 1 at ((Lx − r)/2, Ly/2) and ((Lx + r)/2, Ly/2),

so that the original distance between two flux tubes

is set to be r = 6. We examine three types of the

3
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FIG. 5: The profiles of the supercurrent kμ for κ = 0.5
(upper), κ = 1 (middle), and κ = 2 (lower). The two
black points on the xy plane are the original location of
the Dirac strings.

superconducting phases κ = 0.5 (type-I), 1 (border),

and 2 (type-II).

In Fig. 5, we summarize results of the supercur-

rent. The final location of the center of the vortex

indicates the nature of the flux-tube interaction, such

that the interaction is attractive for type-I, and is re-

pulsive for type-II. The final distance between two
flux tubes for the type-II phase depends on the ex-

plicit value of κ, and also the boundary condition

of the two-dimensional plane. At the border of the

two phases there seems to be no interaction although

the two vortices are overlapped. In fact, this feature

is expected from the property of the string tension

of a single cylindrical flux-tube solution with higher

charges, where it is just proportional to the charge Nq

at the border of the two phases, while it takes smaller

(larger) value for type-I (type-II).

We finally note that if we put two Dirac strings

with Nq = 1 and Nq = −1, the two flux tubes im-

mediately disappear by cancellation of the charges re-

gardless of the type of superconducting phase. This

means that the interaction is always attractive for the

flux tube and anti-flux tube system.

IV. SUMMARY

We have investigated the flux-tube solution in

the DAH model in two-dimensional space by using

the numerical method. We have demonstrated that

not only the single flux-tube system but also the multi

flux-tube system can be solved by the present method,

which allows us to perform further quantitative stud-

ies. These results will also be useful to examine

the systematic effect for general flux-tube systems in

three-dimensional space [7].

The author is grateful to Miho Koma for fruitful

collaboration.
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