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We investigate the static quark-antiquark potential in SU(2) gauge theory by the lattice simulation
with the multilevel algorithm, and examine how the numerical errors of the potential are controlled
by the algorithm parameters. We find that one of the key parameters, the physical time extent of
sublattices, is optimal when it is chosen to be around 0.37 fm, which is quite similar to that already
observed in SU(3) lattice gauge theory.
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I. INTRODUCTION

For the understanding of dynamics of quarks and

gluons inside hadrons a quantum gauge field theory

with non-Abelian SU(2) group symmetry, which we

just call the SU(2) gauge theory, has often been inves-

tigated instead of realistic quantum chromodynamics

(QCD) with SU(3) group symmetry [1]. This is be-

cause that the SU(2) group corresponds to a subgroup

of SU(3), and is expected to describe some of essen-

tial features of QCD. Numerical investigation is usu-

ally needed for the understanding of nonperturbative

properties of the theory, and a powerful method for

this purpose is to define the theory on a hypercubic

discrete lattice, and then compute its partition func-

tion by a Monte-Carlo method using supercomputers.

We call this method the lattice simulation.

The lattice simulations generally provide us with

expectation values of physical quantities. The static

quark-antiquark potential (a variation of the poten-

tial energy as a function of the distance between a

quark and an antiquark) is one of the typical quanti-

ties computed nonperturbatively by the lattice simu-

lation. Once the potential is provided, it is possible

to investigate the bound state of a quark and an anti-

quark by solving the Schrödinger equation, which are

then compared to meson spectra observed by high-

energy accelerator experiments [2]. The functional

form of the potential is also used to understand the

nontrivial vacuum structure.

However, since the expectation values are gen-

erally given by statistical averages of operators con-

∗Division of Liberal Arts / Physics group

structed with a sequential chain of independent vac-

uum configurations, they are accompanied by numer-

ical errors. That is to say, one always faces problem

of accuracy of the numerical result. Therefore, it usu-

ally takes longer computer time to obtain solid results.

Even the quark-antiquark potential, which is a rather

well-known quantity, has still room for improvement

on the numerical accuracy.

In this report, we present some of preliminary re-

sults on the quark-antiquark potential in SU(2) gauge

theory obtained by the lattice simulation with the

multilevel algorithm [3, 4]. We compute the Polyakov

loop correlation function (PLCF), which is defined

by a pair of spatially separated Polyakov and anti-

Polyakov loops, and extract the ground state poten-

tial straightforwardly. We then examine how the nu-

merical errors of the potential are controlled by the

algorithm parameters, aiming to find an optimal set

of parameters to achieve efficient error reduction.

II. NUMERICAL PROCEDURES

We consider SU(2) gauge theory in four dimen-

sions with lattice volume L3×T and lattice spacing a,

and impose periodic boundary conditions in all space-

time directions. We use the standard Wilson gauge

action composed of link variables Uμ(x) ∈ SU(2) as

S=β
∑

x,μ<ν

{1− 1

2
ReTr[Uμ(x)Uν(x+μ̂)U†

μ(x+ν̂)U†
ν(x)]}.(1)

Basic building blocks of the PLCF are two-link

correlators defined by

T(x0, �x1, �x2)αβγδ ≡ U0(x0, �x1)αβU
†
0 (x0, �x2)γδ, (2)

where the Greek indices of U0(x) label the compo-

nent of a 2 × 2 complex matrix for the SU(2) group.
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A two-link correlator is nothing but the direct prod-

uct of two temporal link variables separated by a dis-

tance r= |�x1−�x2|. The two-link correlator acts on a

color state in the 2 ⊗ 2̄ representation of the SU(2)

group |n; �x1, �x2�αβ with the principal quantum num-

ber n, which satisfies T(x0, �x1, �x2)αλγ�|n; �x1, �x2�αγ =

e−En(r)a|n; �x1, �x2�λ�, where En(r) (> 0) corresponds

to the energy. The multiplication law of two-link cor-

relators between two neighboring time slices x0 and

x0 + a is

{T(x0, �x1, �x2)T(x0 + a, �x1, �x2)}αβγδ
= T(x0, �x1, �x2)αλγ�T(x0 + a, �x1, �x2)λβ�δ , (3)

where the repeated Greek indices λ and � are to be

summed over from 1 to 2. The PLCF is finally con-

structed as

TrP (�x1)TrP (�x2)
∗

= {T(0, �x1,�x2)T(a, �x1,�x2)· · ·T(T−a, �x1,�x2)}ααγγ . (4)

Based on the transfer matrix formalism, the ex-

pectation value of the PLCF is evaluated formally by

inserting the complete set of eigenstates at all time

slices x0 = 0, a, ..., T − a, which leads to a relation

�TrP (�x1)TrP (�x2)
∗� =

∞∑
n=0

e−En(r)T . (5)

The ground state potential, V (r) ≡ E0(r), is then

extracted by

V (r) = − 1

T
ln�TrP (�x1)TrP (�x2)

∗�+O(e−(ΔE)T ). (6)

The systematic error term of O(e−(ΔE)T ) is associated

with the excited states, which is always negligible at

zero temperature as the size of T is usually taken large

enough. Once the potential is computed accurately,

it is also possible to investigate the force from the

derivative (difference) as

F (r) =
dV (r)

dr
=

V (r + a)− V (r − a)

2a
. (7)

A numerical problem is that it is impossible to

compute the PLCF in Eq. (5) accurately within the

ordinary lattice simulations as the expectation values

are extremely small at long distances, which are easily

obscured by the statistical noise. We then employ the

multilevel algorithm, which allows us to overcome the

problem on the smallness of the PLCF.

The idea of the algorithm is to compute a corre-

lation function from the product of sublattice averages

of its components, where a sublattice is defined by di-

viding the lattice volume into several layers along the

time direction. During the computation of sublattice

averages, spatial links at the sublattice boundaries are

fixed. The computation of correlation functions in this

way is supported by the transfer matrix formalism. In

order to use the multilevel algorithm efficiently, how-

ever, the number of time slices in a sublattice Ntsl and

the number of internal updates Niupd must be chosen

appropriately depending on the gauge coupling β in

Eq. (1).

III. NUMERICAL RESULTS

Our previous study of SU(3) lattice gauge theory

showed that an optimal choice of aNtsl was around

0.37 fm (1 [fm] = 10−15 [m]) [5, 6]. By taking into ac-

count this observation, we have performed an exten-

sive test of the algorithm parameters in SU(2) lattice

gauge theory. In this report, we present a part of the

results at β = 2.45 and 2.55 for Ntsl = 4 (see, Table I),

and demonstrate how the choice of parameters affects

the effectiveness of the algorithm.

In Figs. 1 – 4, we show numerical results of the

history of the PLCF, the potential, the force, and the

relative error of the potential at β = 2.45 (left) and

β = 2.55 (right), respectively. While we only plot

the on-axis data for the PLCF such that the relative

position vector between a quark and an antiquark is

�r/a = (n, 0, 0) with n = 1, 2, 3..., we plot both the

on-axis and the off-axis data such as �r/a = (n, n, 0),

�r/a = (n, n, n), �r/a = (2n, n, 0) for other results (per-

mutation of the x, y, and z axes is also taken into ac-

TABLE I: The list of simulation parameters. The Sommer
scale r0 is determined so as to satisfy r20F (r0) = 1.65,
where r0 is often regarded as 0.50 fm.

β L3T Ntsl Niupd Ncnf r0/a a [fm] aNtsl [fm]

2.45 324 4 50000 20 5.37 0.0931 0.3724

2.55 324 4 50000 20 7.476 0.0669 0.2676
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FIG. 1: The history of the PLCF as a function of Niupd at β = 2.45 (left) and β = 2.55 (right) for all Ncnf = 20
configurations. The bunch of plateau from upper to lower corresponds to the quark-antiquark distance r/a = 1, 2, ...,
respectively, where only the on-axis data are plotted.
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FIG. 2: The potential as a function of the quark-antiquark distance r/a at β = 2.45 (left) and β = 2.55 (right), where not
only the on-axis data but also the off-axis data are plotted.

count to increase the statistics). The numerical errors

in Figs. 2 and 3 are evaluated by the single-elimination

jackknife method with Ncnf = 20 configurations.

Fig. 1 exhibits that it is possible to compute

extremely small expectation values by increasing the

Niupd only when the physical temporal length aNtsl is

optimally chosen. For the result at β = 2.45 the order

of magnitude of the smallest plateau is of O(10−18).

For the result at β = 2.55, on the other hand, the

smallest plateau of the PLCF is of O(10−14) and it

seems difficult to obtain further small expectation val-

ues even if the Niupd is increased. Note that the value

of aNtsl at β = 2.55 is about 30% smaller than that

at β = 2.45. The potential in Fig. 2 is computed by

using the values of PLCF at Niupd = 50000. The re-

sult is clean up to r/a ∼ 18 at β = 2.45, while up

to r/a ∼ 14 at β = 2.55. For the force the result at

β = 2.45 is clearly better than that at β = 2.55 up

to long distances as shown in Fig. 3. This tendency is

of course reasonable since the force is computed from

the difference of the potential. The scatter plot of

the relative error of the potential in Fig. 4 explicitly

demonstrates the effectiveness of the multilevel algo-

rithm on the choice of algorithm parameters. The

effect of the error reduction is better at β = 2.45 than

that at β = 2.55, especially at long distances.

IV. SUMMARY

We have investigated the static quark-antiquark

potential in SU(2) gauge theory by using the lattice

simulation with the multilevel algorithm [3, 4], and

3
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FIG. 3: The force as a function of the quark-antiquark distance r/a at β = 2.45 (left) and β = 2.55 (right), where not only
the on-axis data but also the off-axis data are plotted.
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FIG. 4: The relative error of the potential (the relative differences of the potentials between each of Ncnf = 20 configurations
and their average) as a function of the quark-antiquark distance r/a at β = 2.45 (left) and β = 2.55 (right), where not only
the on-axis data but also the off-axis data are plotted.

have examined how the numerical errors of the poten-

tial are controlled by the algorithm parameters, where

the key parameters are the number of time slices in

a sublattice Ntsl and the number of internal updates

Niupd. We have compared the results of the PLCF,

the static potential, the force, and the relative error

of the potential at β = 2.45 and 2.55 for Ntsl = 4, and

have found that Ntsl = 4 is suitable for β = 2.45 and

unsuitable for β = 2.55. These results suggest that

the optimal condition aNtsl � 0.37 fm [5, 6], which is

observed in SU(3) lattice gauge theory, seems to hold

also in SU(2) lattice gauge theory.
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