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The dual Abelian Higgs (DAH) model is one of the nonperturbative effective models of quantum
chromodynamics for strong interaction. The DAH model possesses a classical string-like flux-tube
solution, which can be applied to explaining the quark confinement mechanism. We discuss analyt-
ical properties of the flux-tube solution in the DAH model, and demonstrate a numerical method
for solving the field equations.
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I. INTRODUCTION

The investigation of quantum chromodynamics

(QCD) for quarks and gluons requires nonperturba-

tive techniques due to strong nature of the interaction.

One of such techniques is to change the theory to a

weakly interacting one by duality transformation. The

dual Abelian Higgs (DAH) model [1, 2], which we han-

dle in this report, is constructed in such a way [3]. It

then allows us to investigate some of the nonperturba-

tive properties of QCD based on the classical solution

of the model.

The DAH model consists of the axial-vector dual

gauge field Bμ(x) and the complex-scalar Higgs field

χ(x). The Lagrangian density is given by

L =
1

4
F 2
μν + |(∂μ + igBμ)χ|2 + λ(|χ|2−v2)2 , (1)

where

Fμν = ∂μBν − ∂νBμ +
e

2
∗Σμν (2)

is the dual field strength tensor. The model is in-

variant under the U(1) dual gauge transformation,

Bμ → Bμ − ∂μξ , χ → χeiξ , and χ∗ → χ∗e−iξ. The

strength of the interaction between Bμ and χ is con-

trolled by the dual gauge coupling g and the Higgs self

coupling λ, where g satisfies the Dirac quantization

condition (e/2)g = 2π with the electric charge e/2.

An important point is that the strong coupling with

respect to e is now changed to the weak coupling g.

The Higgs condensate v is related to the physical scale.

The structure of the DAH model is quite the

same as the Ginzburg-Landau (GL) model for describ-

ing various properties of superconductor once Bμ and
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χ are regarded as the ordinary U(1) gauge field for the

electromagnetism and the Cooper pair field, respec-

tively. Thus, the DAH model possesses a string-like

flux-tube solution corresponding to the Abrikosov vor-

tex solution in the GL model [4]. Only the difference

is the contribution of ∗Σμν in the dual field strength

tensor in Eq. (2), which is the electric Dirac string

and its end points specify the location of the electric

charges, namely of the quarks [2].

In the present report, we discuss anatomy of

the flux-tube solution in two dimensions by assum-

ing translational invariance along the flux-tube axis.

In this case, the system becomes cylindrically sym-

metric, and finding the solution reduces to a simple

one-dimensional problem. In order to investigate the

general properties of the flux-tube solution, we need to

solve the DAH model numerically in three dimensions

as partly performed in [5]. The numerical method

demonstrated in the present work will be helpful for

further quantitative study in the three-dimensional

system.

II. THE FLUX-TUBE SOLUTION
(ANALYTICAL STUDY)

For the numerical method demonstrated in the

next section, it is useful to isolate the physical scale

from the model (the physical scale is taken into ac-

count after the solution is obtained anyway). In prac-

tice, we may introduce dimensionless variables with

carets by

gBμ ≡ vB̂μ , χ ≡ vχ̂ = v(φ̂1 + iφ̂2) ,

∂μ ≡ v∂̂μ , xμ ≡ v−1x̂μ , Σμν ≡ v2Σ̂μν . (3)

Then the action of the DAH model is written as

S=βv2
∫
d2x̂

[
1

4
F̂ 2
μν+

m̂2
B

2
(D̂μφ̂a)

2+
m̂2

Bm̂
2
χ

8
(φ̂2

a−1)2
]
, (4)
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where

F̂μν = ∂̂μB̂ν − ∂̂νB̂μ + 2π ∗Σ̂μν , (5)

D̂μφ̂a = ∂̂μφ̂a − �abB̂μφ̂b . (6)

The three parameters g, λ, and v in Eq. (1) are now

translated to the inverse square of the dual gauge cou-

pling β = 1/g2, and the masses of the dual gauge and

the Higgs fields,

mB =
√
2gv ≡ m̂Bv , mχ = 2

√
λv ≡ m̂χv , (7)

respectively. �ab in the covariant derivative in Eq. (6)

is the 2nd-rank antisymmetric tensor (�12 = −�21 = 1,

�11 = �22 = 0). The repeated Greek and Latin indices

are to be summed over from one to two. For simplicity,

we omit all of the caret hereafter.

The DAH model has a nontrivial solution when
∗Σμν(x) �= 0 is imposed somewhere, which corresponds

to the flux-tube solution. In this case, the dual gauge

field is decomposed into two parts, Bμ = Breg
μ +Bsing

μ ,

and the second term is determined so as to satisfy the

relation [6],

∂μB
sing
ν − ∂νB

sing
μ + 2π∗Σμν = 0 . (8)

By using the Green function G(x) in two dimensions

(ΔG(x) = −δ(2)(x) where G(x−x�) = − 1
2π ln |x−x�|),

the formal solution of Eq. (8) is expressed as

Bsing
μ (x) = −2π

∑
ν �=μ

∫
d2x�G(x−x�)∂�

ν
∗Σμν(x

�) . (9)

For the case that a single Dirac string is put at

the origin x = 0 such as ∗Σμν = �μνNqδ
(2)(x), where

Nq characterizes the quark charge, we obtain

Bsing
μ (x) = Nq

�μνxν

|x|2 . (10)

In this case, the system becomes cylindrically sym-

metric. By using the polar coordinate, x1 = r cos θ

and x2 = r sin θ with r ≡ |x|, Eq. (10) becomes

�Bsing = −Nq

r
(− sin θ�e1+cos θ�e2) = −Nq

r
�eθ . (11)

Other field variables are also written as

�Breg = Breg(r)�eθ =
B̃(r)

r
�eθ , (12)

φ1 = φ(r) cos η(r) , φ2 = φ(r) sin η(r) . (13)

We now consider the case that the phase of the

Higgs field η is single valued. Then, the phase becomes

redundant and can be absorbed into Breg, so that the

DAH action is written as

S = βv2
∫ ∞

0

(2πr)dr

[
1

2

(
1

r

dB̃

dr

)2

+
m2

B

2

{(dφ

dr

)2

+

(
B̃ −Nq

r

)2

φ2
}
+
m2

Bm
2
χ

8
(φ2 − 1)2

]
. (14)

The field equations are then given by

d2B̃

dr2
− 1

r

dB̃

dr
−m2

B(B̃ −Nq)φ
2 = 0 , (15)

d2φ

dr2
+
1

r

dφ

dr
−
(
B̃ −Nq

r

)2

φ−m2
χ

2
φ(φ2−1) = 0 . (16)

The exact analytical solution of these field equations is

not known. However, in the region of r where φ(r) ∼ 1

is satisfied, the first equation is reduced to

d2K

dρ2
+

1

ρ

dK

dρ
− (1 +

1

ρ2
)K = 0 , (17)

where the radial coordinate is rescaled by ρ = mBr,

and the dual gauge field is expressed as B̃ = Nq −
cρK(ρ) with a multiplicative factor c. In fact, the

solution of Eq. (17) is known to be the modified

Bessel function of the second kind, K = K1(ρ) ∼√
π/(2ρ)e−ρ for larger ρ. The electric field and the

supercurrent are then expressed as

E(r)=
√
β
1

r

dB̃

dr
= c

√
βm2

BK0(mBr) , (18)

k(r)= −
√
βm2

B

B̃ −Nq

r
φ2 = c

√
βm3

BK1(mBr) ,(19)

indicating the flux-tube structure. Note that the ratio

k(r)/E(r) is independent of c, which is expected to ap-

proach mB for larger r, since the asymptotic behavior

of K0 is the same as K1.

Following the idea of Bogomol’nyi [7], we may

rewrite the DAH action in Eq. (14) as

S = βv2
∫ ∞

0

(2πr)dr

[
1

2

(
1

r

dB̃

dr
+
m2

B

2
(φ2 − 1)

)2

+
m2

B

2

(
dφ

dr
+

(
B̃−Nq

r

)
φ

)2

+
m2

B(m
2
χ−m2

B)

8
(φ2−1)2

]

−βv2
∫ ∞

0

(2πr)dr
m2

B

2r

[
dB̃

dr
(φ2−1)+

dφ2

dr
(B̃−Nq)

]
. (20)

It is remarkable that in the special case such as

κ ≡ mχ/mB = 1, which is called the Bogomol’nyi

2
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limit, the last term of the second line is automatically

dropped, and the last line of the action is evaluated

analytically only by taking into account the bound-

ary conditions B̃(0) = 0, B̃(∞) = Nq, and φ(0) = 0,

φ(∞) = 1. As a result, the action simply becomes

S = βv2 ·Nqπm
2
B , (21)

where the field equations are given by the first-order

differential equations,

1

r

dB̃

dr
+
m2

B

2
(φ2−1)=0 ,

dφ

dr
+

(
B̃−Nq

r

)
φ=0 . (22)

Note that applying the derivative with respect to r

recovers the second-order differential equations as in

Eqs. (15) and (16).

III. THE FLUX-TUBE SOLUTION
(NUMERICAL STUDY)

The existence of the flux-tube solution is known

from the analytical investigation as in the previous

section. However, in order to clarify the detailed

structure of the flux tube, numerical investigation is

needed. We may then write the radial coordinate as

r = ns (n = 0, 1, 2, ..., nmax) with a small interval s

and replace the derivative by the (central) difference

such that for a function f(r),

df(r)

dr
→ f(n+ 1)− f(n− 1)

2s
. (23)

Then the DAH action in Eq. (14) is expressed as

S = βv2
∑
n

(2πns)s

[
1

2

(
B̃(n+1)−B̃(n−1)

2ns2

)2

+
m2

B

2

{(
φ(n+1)−φ(n−1)

2s

)2

+

(
B̃(n)−Nq

ns

)2

φ(n)2
}

+
m2

Bm
2
χ

8
(φ(n)2−1)2

]
, (24)

and the field equations are

X(n)≡ B̃(n+1)+B̃(n−1)−2B̃(n)

s2
− B̃(n+1)−B̃(n−1)

2ns2

−m2
B(B̃(n)−Nq)φ(n)

2 = 0 , (25)

Y(n)≡ φ(n+1)+φ(n−1)−2φ(n)

s2
+
φ(n+1)−φ(n−1)

2ns2

−
(
B̃(n)−Nq

ns

)2

φ(n)−m2
χ

2
φ(n)(φ(n)2−1)=0 . (26)
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FIG. 1: Histories of the maximum violation of the field
equations max(|X(n)|) and max(|Y(n)|) as a function of
iteration step.
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FIG. 2: History of the action S as a function of iteration
step, which approaches the analytical expectation S/v2 =
π for β = 1 and mB = mχ = 1 with Nq = 1.

In order to obtain the solution, we find that the

Newton-Raphson method is applicable; the field vari-

ables are iteratively updated by

B̃(n) → B̃(n)− X(n)

X ′(n)
, φ(n) → φ(n)− Y (n)

Y ′(n)
, (27)

where

X ′=
dX

dB̃
=− 2

s2
−m2

Bφ(n)
2 , (28)

Y ′=
dY

dφ
=− 2

s2
−
(
B̃(n)−Nq

ns

)2

−m2
χ

2
(3φ(n)2−1) ,(29)

and the iteration is terminated when max(|X(n)|) < �

and max(|Y(n)|) < � are satisfied simultaneously with

a reasonably small value of �. The initial conditions of

the dual gauge field and the Higgs field are set to be

B̃(0) = 0, B̃(nmax) = Nq, and φ(0) = 0, φ(nmax) = 1

with a reasonably large nmax. Using the converged

3
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FIG. 3: The field profiles as a function of r for β = 1 and
mB = mχ = 1 with Nq = 1.
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FIG. 4: The ratio of the supercurrent to the electric field
as a function of r for β = 1 and mB = mχ = 1 with
Nq = 1.

values of field variables B̃ and φ, the electric field and

the supercurrent can be computed as

E(r) →
√
β
B̃(n+ 1)− B̃(n− 1)

2ns2
, (30)

k(r) → −
√
βm2

B

B̃(n)−Nq

ns
φ(n)2 . (31)

As an example, we demonstrate the case that

β = 1.0 and mB = mχ = 1.0 with Nq = 1. We show

histories of the maximum violation max(|X(n)|) and

max(|Y(n)|) in Fig. 1, and of the action S in Fig. 2,

both as a function of iteration step. We have set

s = 0.05, nmax = 800 (rmax = 40), and � = 10−7.

We find that the convergence criterion is satisfied af-

ter 104 steps. It took 1.78 seconds with a single CPU

on the Mac mini 3GHz Intel Core i7 without any spe-

cific optimization of the code. The numerical value

of the action certainly reproduces the analytical value

S/v2 = π already at around 4000 steps. The com-

putation time is of course dependent on the choice of

numerical parameters, but the quantitative results can

be obtained within affordable time in any case.

We finally plot the field profiles of the Higgs

field φ, the electric field E(r), the supercurrent k(r),

and the modified dual gauge field B̃(r) in Fig. 3 as

a function of r. It now reveals the detailed struc-

ture of the flux-tube profile for the whole region of r.

We find that the Higgs field is saturated as φ ∼ 1

for r > 5, where the ratio of the supercurrent to the

electric field is well described by that of the modified

Bessel functions as shown in Fig. 4, which then ap-

proaches mB = 1 for larger r due to K0 ∼ K1.

IV. SUMMARY

We have discussed anatomy of the flux-tube solu-

tion in the U(1) DAH model both from analytical and

numerical sides. We have found that the numerical

method is well controlled, which allows us to further

quantitative studies. This method is also applicable

to performing a systematic check of numerical inves-

tigation of the DAH model in three dimensions [5].

The author is grateful to Miho Koma for fruitful

collaboration.
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