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We present results of the static three-quark potential in quantum chromodynamics obtained by
using lattice Monte-Carlo simulations. We investigate the three-quark potential of O(200) sets of
the three-quark geometries including not only the cases that three quarks are put at the vertices of
acute, right, and obtuse triangles, but also the extreme cases such that three quarks are put in line.
We find a clear evidence that the string tension of the three-quark potential is the same as that of
the quark-antiquark potential regardless of the geometry of the three quarks.
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I. INTRODUCTION

Although hadrons such as mesons and baryons

are known to be composed of quarks, the underlying

structure is not yet completely understood. This is

due to difficulty of solving quantum chromodynam-

ics (QCD), a quantum gauge field theory with SU(3)

group symmetry, at the energy scale of hadrons where

QCD becomes nonperturbative. A possible approach

is then to define QCD in four dimensional Euclidean

space on a hypercubic discrete lattice and compute the

QCD partition function by the Monte-Carlo method

(using supercomputers), which is referred to as lattice

QCD simulations. This method allows us to compute

expectation values of various physical quantities di-

rectly without relying on any perturbative techniques.

In this report, we present our recent results of the

lattice QCD simulations on the static three-quark po-

tential [1, 2], which is relevant to the understanding of

the baryon structure. Our method consists of comput-

ing the expectation values of the correlation function

of three Polyakov loops (PLCF) at zero temperature

accurately by using the noise reduction method called

the multilevel algorithm [3, 4], and of extracting the

potential from them. We obtain the three-quark po-

tential of O(200) sets of the three-quark geometries

including not only the cases that three quarks are put

at the vertices of acute, right, and obtuse triangles,

but also the extreme cases such that three quarks

are put in line. From the derivative of the poten-

tial with respect to distances among the three quarks,

we find a clear evidence that the string tension of the

three-quark potential is the same as that of the quark-

antiquark potential regardless of the geometry of the
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three quarks. So far, the three-quark potential has

been computed by several groups [5–12] by evaluat-

ing the expectation value of the three-quark Wilson

loop. However, the use of the Wilson loop may cause

a systematic effect due to the presence of the junction

of spatial Wilson lines, especially when the temporal

extent of the Wilson loop is not large enough [13, 14].

It is particularly worth noting that our results are free

from such a systematic effect.

II. NUMERICAL PROCEDURES

We consider QCD within the quenched approx-

imation (corresponding to pure SU(3) lattice gauge

theory) in four dimensions with the lattice volume

L3 × T and the lattice spacing a, and impose pe-

riodic boundary conditions in all space-time direc-

tions. By preparing the three-link correlators, which

is a tensor product of the time-like link variables

U4(x) placed at x = (x0, �x1), (x0, �x2) and (x0, �x3) for

x0 = 0, a, ..., T − a,

T(x0, �x1,2,3)αβγδ�ζ

≡ U4(x0, �x1)αβU4(x0, �x2)γδU4(x0, �x3)�ζ , (1)

where Greek indices take the values from 1 to 3 in

SU(3), we construct the three-quark PLCF as

TrP (�x1)TrP (�x2)TrP (�x3)

= {T(0, �x1,2,3) · · ·T(T − a, �x1,2,3)}ααγγ�� . (2)

The ground state potential can be extracted from the

expectation value of the PLCF with a large T as

V3q = − 1
T

ln�TrP (�x1)TrP (�x2)TrP (�x3)� , (3)

where we employ the multilevel algorithm [3, 4]. Note

that this algorithm allows us to compute the expecta-

tion value accurately even from one gauge configura-

tion [13].
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FIG. 1: The three-quark geometries investigated in our numerical simulations. The circles represent the spatial location of
quarks. Three Polyakov loops are put at the vertices of (i) acute, (ii) right, (iii) obtuse triangles, and are also put in (iv)
line, and are put to be (v) the quark-diquark system.

The spatial locations of the Polyakov loops, �x1,

�x2, and �x3 correspond to those of three quarks in the

three-dimensional space, respectively. There are five

types of three-quark geometries: three quarks are put

at the vertices of acute (ACT), right (RGT), obtuse

(OBT) triangles, and are put in line (LIN) as shown in

Fig. 1. As a special case, two of three quarks are put

at the same location, which corresponds to a quark-

diquark system (QDQ). These three-quark geometries

can be classified by the value of the maximum inner

angle of a triangle

θmax = max(θ1, θ2, θ3)

= cos−1

(
rmax(r2

1 + r2
2 + r2

3 − 2r2
max)

2r1r2r3

)
,(4)

where

r1 = |�x2−�x3|, r2 = |�x3−�x1|, r3 = |�x1−�x2| , (5)

are interquark distances and rmax = max(r1, r2, r3).

Acute triangles satisfy θmax < 90◦, which contain

equilateral and isosceles triangles in our study. Right

triangles are the case θmax = 90◦. Obtuse trian-

gles are further classified into two types depending

on θmax, obtuse-narrow (OBTN) triangles for 90◦ <

θmax < 120◦ and obtuse-wide (OBTW) triangles for

120◦ � θmax < 180◦.

In contrast to the classification of the three-quark

geometries, the parametrization of the three-quark po-

tential is not straightforward. This is due to the fact

that the potential can depend not only on the loca-

tion of three quarks, �x1, �x2, and �x3, but also on the

structure of the flux tube spanned among the three

quarks, which is unknown a priori because of the non-

perturbative feature of the QCD vacuum. Therefore,

the determination of the functional form of the po-

tential is nothing but the finding of appropriate dis-

tances that can capture the systematic behavior of the

potential. Such distances should be symmetric under

the permutation of the quark positions.

The simplest distance is then given by the sum

of interquark distances in Eq. (5),

Δ = r1 + r2 + r3 . (6)

Another possible distance is given by the minimal to-

tal length of lines connecting the three quarks via the

Fermat-Torricelli point of a triangle,

Y =

√
r2
1 + r2

2 + r2
3 + 4

√
3S

2
, (7)

where S is the area of the triangle given by Heron’s

formula,

S =
1
4

√
Δ(Δ − 2r1)(Δ − 2r2)(Δ − 2r3) . (8)

Note that the distance between the Fermat-Torricelli

point and each vertex is

li = Y − 1
Y

(r2
i +

4S√
3
) . (9)

Two distances Δ and Y were often used to examine

the behavior of the potential in the earlier studies.

We also follow them in our analyses of the three-quark

potential. In terms of the minimal length of connected

lines, Y is reduced to

Λ = Δ − rmax (10)

when θmax � 120◦. It is then convenient to introduce

a combined distance of Y and Λ classified by θmax as

Lstr =
{

Y (θmax < 120◦)
Λ (θmax � 120◦) . (11)
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III. NUMERICAL RESULTS

We carried out the lattice QCD simulations us-

ing the standard Wilson gauge action in SU(3) lattice

gauge theory at β = 6.00 on the 244 lattice. The

lattice spacing is a = 0.093 [fm], determined by the

Sommer scale r0 = 0.50 [fm] [15]. One Monte Carlo

update consisted of 1 heatbath and 5 over-relaxation

steps. The parameters for the multilevel algorithm are

Nsub = 6 (the number of sublattices), which corre-

sponds to Ntsl = L/(aNsub) = 4, and Niupd = 500000

(the number of internal updates).

Firstly, we focus on the potential of the isosce-

les triangle geometries within ACT, where the two

of three quarks are placed at �x1 = (x, 0, 0) and

�x2 = (0, x, 0), and the remaining third quark is placed

at �x3 = (0, 0, z) with z � x. In this case, Lstr is

identical to Y . The distance between the Fermat-

Torricelli point and �x1 and �x2, respectively, is the

same l1 = l2 = (
√

6/3)x. Therefore, pulling the

third quark (changing z) with the fixed first and sec-

ond quarks does not affect the location of the Fermat-

Torricelli point, which just affects the increase of the

energy between the Fermat-Torricelli point and the

third quark, where l3 =
√

z2 + x2/2−x/
√

6. We then

compute the derivative of the potential with respect

to Y for several fixed values of x,

V ′
3q =

V3q(x, z + δz) − V3q(x, z)
δY

. (12)

In Fig. 2 (upper), we plot the result for one gauge

configuration at β = 6.00 with the classification in

terms of the distance between the first and second

quarks, rmin =
√

2 x, where x/a = 1, 2, and 3 (in

this case, δY = δl3). We find that all the derivatives

behave quite similarly and approach a constant value

at long distance. Remarkably, the constant value is

nothing but the string tension in the quark-antiquark

system, σqq̄a
2 = 0.0449. Since the third quark is cho-

sen arbitrarily among the three, this result also sup-

ports a picture of the Y -shaped flux-tube formation.

This feature agrees with that was pointed out by Taka-

hashi et al. [9, 10] based on the χ2 fit to the potential

data with the Y Ansatz.

Secondly, we pay attention to the potentials of

RGT, where �x2 = (0, y, 0) and �x3 = (0, 0, 0), and

FIG. 2: The derivatives of the three-quark potential with
respect to Lstr for acute (upper), right (middle), and line
(lower) geometries. The dotted line in each plot corre-
sponds to the string tension of the quark-antiquark poten-
tial σqq̄a

2 = 0.0449 [1].

the remaining first quark is placed at �x1 = (x, 0, 0)

with x � y. In this case, although the location of the

Fermat-Torricelli point is slightly dependent on chang-

ing x, it becomes insensitive to x when x � y. The

derivative is then defined by

V ′
3q =

V3q(x + δx, y) − V3q(x, y)
δY

. (13)

In Fig. 2 (middle), we plot the result for the same one

3
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FIG. 3: The derivatives of the quark-diquark and quark-
antiquark potentials with respect to r. The horizontal
dotted line corresponds to the string tension of the quark-
antiquark potential σqq̄a

2 = 0.0449 [1].

gauge configuration with the classification in terms

of the distance between the second and third quarks,

rmin = y, where y/a = 1 ∼ 4. We find that all

the derivatives approach the constant value, σqq̄a
2 =

0.0449, at long distance: the tendency is quite the

same as that for ACT.

Thirdly, we examine the potentials of LIN, where

�x1 = (x1, 0, 0), �x2 = (x2, 0, 0), and �x3 = (0, 0, 0),

which is an extreme case that there is probably no

chance to form a junction of the flux tube. For a fixed

distance rmin = x2 (0 < x2 < x1/2), the derivative is

then defined by

V ′
3q =

V3q(x1 + δx1, x2) − V3q(x1, x2)
δx1

. (14)

In Fig. 2 (lower), we plot the result for the same one

gauge configuration as a function of Lstr = x1. We

again find that all the derivatives approach the con-

stant value, σqq̄a
2 = 0.0449, at long distance.

Finally, we look at the quark-diquark system. In

Fig. 3, we plot the derivatives of the quark-diquark

and quark-antiquark potentials with respect to the in-

terquark distance r. In this case, we find that both

data overlap with each other (including finite volume

effects at large r), which means that the string tension

is exactly the same.

IV. SUMMARY

By using the lattice QCD simulations, we have

computed the static three-quark potential of O(200)

sets of the three-quark geometries including not only

the cases that three quarks are put at the vertices of

acute, right, and obtuse triangles, but also the extreme

cases such that three quarks are put in line. We have

used the PLCF as the three-quark source, which has

been quite important to obtain the result with less

systematic effect. From the analysis of the derivative

of the potential with respect to distances among the

three quarks, we have found a clear evidence that the

string tension of the three-quark potential is the same

as that of the quark-antiquark potential regardless of

the geometry of the three quarks.
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