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The inter-quark potential computed by lattice QCD Monte Carlo simulations contains valuable
information on the nonperturbative dynamics of quarks and gluons in quantum chromodynamics,
which is relevant to the understanding of the hadron structures. We investigate the functional form
of the potential in detail not only by applying the χ2 fitting but also by evaluating the gradient of
the potential, and clarify its behavior as a function of the inter-quark distance.

I. INTRODUCTION

Recently, we have computed the potential en-

ergy for the various quark systems, the inter-quark

potential, by performing large scale numerical simula-

tions of QCD using the discrete lattice formulation in

four-dimensional Euclidean space-time (lattice QCD

Monte Carlo simulations) [1–3]. QCD is an abbrevia-

tion of the quantum gauge field theory associated with

the SU(3) group symmetry called “quantum chromo-

dynamics” discovered in the 1970s [4], which is sup-

posed to describe the dynamics of quarks and gluons

inside mesons and baryons, i.e., hadrons. We then

confront with the problem of finding the appropri-

ate functional form of the inter-quark potential, which

is relevant to the understanding of the hadron struc-

tures.

Given a set of experimental data, one often sum-

marizes its behavior by fitting it to a model func-

tion with adjustable parameters. The χ2 fitting is

widely used for this purpose. For the set of dis-

crete data point (xi, yi) (i = 1, 2, ..., np) with the

standard deviation σi the model function yfit is as-

sumed to be a function of x with a set of parameters

�a = (a1, a2, ..., anpara), which is determined so as to

minimize the value of χ2 defined by

χ2 =
np∑
i=1

(
yi − yfit(xi;�a)

σi

)2

. (1)

Depending on the value of χ2, one argues the goodness

of the fitting and the validity of the model function.

If the fitting works well, the value of χ2/ndf , where

ndf = np − npara, will be of O(1).

The χ2 fitting can then be applied for the deter-

mination of the functional form of the inter-quark po-

tential, since the results are given by a set of numerical
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values associated with the statistical errors. However,

a weakness of the χ2 fitting may be that the model

function cannot be selected uniquely only by looking

at the value of χ2. If there exists an analytical pre-

diction from QCD on the behavior of the inter-quark

potential, the obtained functional form can be used

to examine the validity of QCD, but this is not the

case in QCD due to its nonperturbative nature, and

this is the reason why we have resorted to numerical

simulations.

In this report, we investigate the functional form

of the inter-quark potential by applying not only

the χ2 fitting but also the additional method so as to

compensate the weakness of the χ2 fitting. In partic-

ular, we look at the gradient of the inter-quark poten-

tial, that is, the derivative of the potential with respect

to the distance between quarks. We note, however,

that this additional method is applicable only when

the numerical errors of the original data are highly

suppressed, otherwise the gradient will be noisy and

relevant information will be obscured. The numerical

data of our simulations satisfy this criterion by virtue

of the simulation algorithm called the multi-level al-

gorithm [5, 6].

II. NUMERICAL PROCEDURES

We perform lattice QCD simulations within the

quenched approximation in four dimensions with the

lattice volume L3×T and the lattice spacing a by im-

posing periodic boundary conditions in all space-time

directions. The inter-quark potential is extracted from

the expectation value of the Polyakov loop correlation

function (PLCF). In what follows we only explain how

to compute the inter-quark potential for the quark-

antiquark system (mesons), but the similar procedure

is also applicable to the three-quark system (baryons).
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We define a two-link correlator as

T(t, �r1, �r2)αβγδ ≡ U4(t, �r1)αβU4(t, �r2)∗γδ , (2)

which is a direct product of two temporal link vari-

ables at a time t separated by a distance r= |�r1−�r2| and

consists of a complex matrix with 34 = 81 components

(Greek indices take the values from 1 to 3). The spa-

tial vectors �r1 and �r2 represent the spatial positions of

a quark and an antiquark, respectively. The two-link

correlator acts on the color states in the 3 ⊗ 3̄ repre-

sentation of the SU(3) group |n;�r1, �r2�αβ , which satis-

fies T(t, �r1, �r2)αλγ�|n;�r1, �r2�αγ = e−En(r)a|n;�r1, �r2�λ�,

where n is the principal quantum number (repeated

indices are assumed to be summed over from 1 to 3).

The energies En(r) are positive, which are common

to all color components of |n;�r1, �r2�αβ . The multi-

plication rule of the two-link correlators for the two

neighboring time at t and t + a is

{T(t, �r1, �r2)T(t + a,�r1, �r2)}αβγδ

= T(t, �r1, �r2)αλγ�T(t + a,�r1, �r2)λβ�δ . (3)

By using the two-link correlators, the PLCF is

then constructed as

TrP (�r1)TrP (�r2)∗

= {T(0, �r1,�r2)T(a,�r1,�r2)· · ·T(T−a,�r1,�r2)}ααγγ . (4)

The expectation value is evaluated by inserting the

complete set of eigenstates at all times t = 0, a, ..., T −
a as

�TrP (�r1)TrP (�r2)∗� =
∞∑

n=0

wne−En(r)T , (5)

where w0 = 1 is guaranteed automatically. We finally

obtain the ground state potential V (r) ≡ E0(r) by

V (r)=− 1
T

ln�TrP (�r1)TrP (�r2)∗�+O(e−(E1−E0)T ), (6)

where the terms of O(e−(E1−E0)T ) are always negli-

gible at zero temperature. Although it is impossible

to compute the expectation values of the PLCF accu-

rately within the ordinary simulations as they are ex-

tremely small at long distances, it is possible to over-

come this problem by using the multi-level algorithm.

The idea of the multi-level algorithm is to com-

pute the correlation function, which may have an ex-

tremely small expectation value, from the product of

relatively large sub-lattice averages of its components

(in our case it corresponds to the product of Ts within

a sub-lattice), where the sub-lattice is defined by di-

viding the lattice volume into several layers along the

time direction. During the computation of the sub-

lattice averages, the spatial links at the sub-lattice

boundaries are kept intact. The computation of the

correlation function in this way is supported by the

transfer matrix formalism of quantum field theory.

III. NUMERICAL RESULTS

We carried out lattice QCD simulations using the

standard Wilson gauge action at the coupling β = 6.00

on the L3 × T = 243 × 24 lattice with the multi-level

algorithm. The lattice spacing a = 0.093 [fm], which

is determined by the Sommer scale r0 = 0.50 [fm] [7].

One Monte Carlo update consisted of one heat-bath

and five over-relaxation steps. The number of sub-

lattice Nsub = 6, which corresponds to Ntsl = 4, so

that aNtsl = 0.372 [fm]. The number of internal up-

dates Niupd = 10000 and the number of gauge con-

figurations Ncnf = 200. The numerical errors of the

inter-quark potential and its derivatives are estimated

by the jackknife method.

In Fig. 1, we plot the quark-antiquark potential

as a function of the inter-quark distance r/a. We

find that the most of the data fall into one curve.

The labels (i, j, k) represent the base vectors along

the quark-antiquark direction. For instance, the data

belong to (1, 0, 0) are for the case that the quark and

antiquark are separated along the x, y, and z axes (on-

axis), while the data belong to (1, 1, 0), (1, 1, 1), and

(2, 1, 0) are for the cases that the quark and antiquark

are separated along the off-axis. The unit Euclidean

distances for these off-axis settings are r/a =
√

2,√
3, and

√
5, respectively. Note that the tree-level

improvement is applied to the inter-quark distance be-

fore plotting the data by using the three-dimensional

Green’s function in infinite volume, which helps to re-

duce the lattice discretization effect [7]. The dotted

line is the model function in the form

Vfit(r) = − c

r
+ σr + μ , (7)

which is fitted to the on-axis (1, 0, 0) data. We obtain

2

60 沼津工業高等専門学校研究報告　第 51 号



 a
 V

 ( 
r /

 a
 )

 r / a 

 (1,0,0)
 (1,1,0)
 (1,1,1)
 (2,1,0) 
 fit (1,0,0)

FIG. 1: The quark-antiquark potential as a function of the
inter-quark distance r/a.

c = 0.2826(7), σa2 = 0.04558(7), and μa = 0.7540(5)

for the fitting range r/a = 1.855 ∼ 9.974 (correspond-

ing to r/a = 2 ∼ 10 before the tree-level improvement)

with np = 9 and χ2 = 3.1 (χ2/ndf = 0.52). We call c

the Coulombic coefficient, σ the string tension, and μ

just a constant. We then find that the off-axis data

behave nicely up to the distances longer than the half

of the spatial lattice volume r/a = 12, at where the

on-axis data already suffer from finite volume effects.

In order to confirm the validity of this functional

form, we further investigate the gradient of the po-

tential data. In Fig. 2, we plot the first derivative

of the quark-antiquark potential with respect to the

inter-quark distance r/a,

F (r +
h

2
) =

V (r + h) − V (r)
h

, (8)

where h/a = 1 for the on-axis (1, 0, 0) data, and h/a =√
2,

√
3,

√
5 for the off-axis (1, 1, 0), (1, 1, 1), (2, 1, 0)

data, respectively. If the model function in Eq. (7) is

valid, the first derivative F should behave as

dVfit

dr
=

c

r2
+ σ . (9)

The data seem to fall into this curve (dotted line) and

approach the value σa2 = 0.04558 at long distances

(solid line).

It is possible to extract the Coulombic coeffi-

cient c directly from the second derivative of the po-

tential. For the model function in Eq. (7) its deriva-

tives with respect to r behave as

V ��
fit = −2c

r3
, V

(4)
fit = −4!c

r5
, V

(6)
fit = −6!c

r7
, ... . (10)

 a
2  F
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 )
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FIG. 2: The first derivative of the quark-antiquark poten-
tial with respect to the inter-quark distance r/a.

Therefore we expect

V (r + h) + V (r − h) − 2V (r)
h2

= V �� + 2
h2

4!
f (4) + 2

h4

6!
f (6) + · · ·

= −2c

r3
(1 +

h2

r2
+

h4

r4
+ · · · )

= −2c

r3
(1 − h2

r2
)−1 , (11)

and obtain

c = −r3

2
(1−h2

r2
)(

V (r + h)+V (r − h)−2V (r)
h2

) . (12)

The corresponding continuum expression derived from

Eq. (7) is

c = −r3

2
V ��

fit(r) . (13)

Note that the O(h2) terms present in the ordinary

second difference is properly removed by the factor

(1 − h2

r2 ) in Eq. (12).

In Fig. 3, we plot the Coulombic coefficient c

computed by Eq. (12) as a function of r/a. We

find that the value of c is approximately constant

around c � 0.3. The two solid lines correspond to the

c = 0.282 and c = 0.315, which are the minimum and

the maximum values obtained by the χ2 fitting of the

potential for the on-axis and the off-axis settings. The

values of c in the range r/a = 3 ∼ 8 lie within these

two lines. The deviation at long distances r/a > 9 is

due to finite volume effects, which is expected to dis-

appear for larger lattice volumes. If we consider the

deviation at short distance r/a < 3 seriously, we may

conclude that the term −c/r in Eq. (7) is not enough

3

61Numerical evaluation of the gradient of the inter-quark potential



 c

 r / a 

 (1,0,0)
 (1,1,0)
 (1,1,1)
 (2,1,0) 

FIG. 3: The Coulombic coefficient c extracted from the
second derivative of the potential.
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FIG. 4: The string tension σa2 extracted from the second
derivative of the potential after multiplying r.

to describe the short distance behavior of the poten-

tial. A possible explanation may be that the c is not

constant but dependent on r. It is interesting to in-

vestigate the short distance behavior in detail, which

however is beyond the scope of the present report.

In Fig. 4, we plot the string tension σa2 directly

extracted from the second derivative of the potential

after multiplying r,

σa2 =
1
2

(r + h)V (r + h)+(r − h)V (r − h) − 2rV (r)
h2

.

(14)

The corresponding continuum expression derived from

Eq. (7) is

σa2 =
1
2

d2

dr2
(rVfit(r)) . (15)

We find that the values of σa2 behave as constant,

which lie on the solid line corresponding to the value

σa2 = 0.04558 obtained by the χ2 fitting. We

then conclude that the linear-rising term is certainly
present in the quark-antiquark potential. The devia-

tion at long distances is due to finite volume effects,

while the deviation at short distances indicates that

there exist the terms which do not behave as constant

even after multiplying r to the potential.

IV. SUMMARY

We have investigated the functional form of the

inter-quark potential obtained by the lattice QCD

simulations not only by applying the χ2 fitting but

also by evaluating the gradient of the potential. We

have confirmed that the quark-antiquark potential can

be described mostly by the sum of the Coulombic term

and the linear term, which is actually the well-known

result, but we have further clarified the r dependence

of the Coulombic coefficient and the string tension.

The results indicate that some modifications to the

Coulombic term are needed for the perfect description

of the potential including the data at short distances.

We plan to apply similar analyses presented in this

report to the determination of the functional form of

the three-quark potential [1–3].
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