大気の抵抗があるときの固体球の落下運動

大庭勝久*1舟田敏雄*2

Free Fall of a Solid Sphere under Air Resistance

Katsuhisa OHBA^{*1} and Toshio FUNADA^{*2}

Abstract: A solid sphere (rain drop) falls freely in atmosphere under air resistance. The resistance proportional to the sphere velocity is introduced in a textbook of high-school physics, but the resistance proportional to the square of the velocity should be compensated as realistic phenomena from the standpoint of fluid mechanics. Both resistance mechanisms are treated as a unified manner in this report, and it is found that the two mechanisms can work well according to the values of Reynolds number. A short comment for a rain drop (liquid) is made based upon the viscous potential flow analysis.

Keywords: Free Fall of Solid Sphere, Air Resistance Proportional to the Sphere Velocity and to the Square of the Velocity

1 はじめに

雨粒が空気中を運動するとき空気の抵抗を受けることが 教科書(「物理基礎」,「物理」)[1] に解説されている.物 理基礎 pp.71-72「空気の抵抗」と物理 pp.22-23「空気の 抵抗」には「雨粒が、重力だけを受けて自由落下する場合 を考えよう. 雨粒が 1000 m 落下したときの速さ v [m/s] を (18) 式より計算すると、 v = 140 m/s となる. しかし、 実際は大粒の雨でも10m/s程度である.これは、雨粒が 空気の抵抗を受けるためである.摩擦と同様に、空気の 抵抗が運動を妨げる向きに働くため、雨粒はさほど加速 されずに地面に到達する.」と解説され、続いて「空気の 抵抗力と終端速度」の項で「速度に比例する抵抗力」の説 明になる.しかし、速度に比例する抵抗の場合には小粒 の雨のとき終端速度 $v = 0.1 \sim 1 \text{ m/s}$ の等速度運動とな り、速度の二乗に比例する抵抗の場合には大粒の雨のと き終端速度約 v = 11 m/s の等速度運動となる. つまり, 速度に比例する抵抗の場合、大粒の雨で 10 m/s 程度の等 速度運動にはならないことに注意する必要がある.

これを補うために,空気の抵抗は,Newtonの抵抗法則 で表現され,物体の速度に比例する抵抗(Stokesの抵抗法 則)と物体の速度の二乗に比例する抵抗があり,その抵抗 法則の適用範囲が Reynolds 数に依ることは KTJ06の補 助教材に示して来た.ここでは,空気中を落下する固体 球に対し,実際に2つの抵抗法則を用いて計算した終端 速度の例を示す.

本報告では,前述の視点から,教材開発・教程の改善・ 高度化を進めて来た物理学実験事例^[2]を解説し,この間 の成果と次の課題を述べる.

2 流体力学で得られている抵抗法則

空気の質量密度を ρ_a ,粘性係数を μ_a ,動粘性係数を $\nu_a = \mu_a/\rho_a$,固体球(雨滴,球状水滴とみなす)の半径を a,空気の流れの代表速度をvと表すと,物体に働く抵抗 力 Dの測定値の特性は抗力係数 $C_D = D/\left(\frac{\rho_a}{2}v^2S\right)$ (縦 軸)と流れの Reynolds 数 $R_e = 2av/\nu_a = 2av/(\mu_a/\rho_a)$ (横軸)の図(**Fig.1**)に示されており, $R_e < 1$ の層流領域, $1 < R_e < 2975$ の遷移領域, 2975 $< R_e$ の乱流領域に大 別される.但し,流れに垂直な物体の断面積Sは球の場 合 $S = \pi a^2$ である.通常,流れの速度を変えて静止固体 球に働く抵抗力を測定するが,ここでは,静止大気中を 落下する固体球(球状水滴)に適用する.

y軸を鉛直下方とするデカルト座標系を取り、重力加 速度をgとして、質量 $m_1 = \rho \frac{4\pi}{3} a^3$ ($\rho = 1000 \text{ kg/m}^3$ は 水の密度)の固体球(球状水滴)の位置を $y_1 \equiv y_1(t)$ (t:時間)と表すと、固体球の運動方程式は次式で与えられ、固 体球の速度 $v = dy_1/dt$ の1階微分方程式となる:

 $m_1 \ddot{y}_1 = m_1 g - D \rightarrow m_1 \dot{v} = m_1 g - D$ (2.1) この式の右辺の抵抗力 D は、 v や a 等の関数であり、 R_e 数の値に依って異なる値を取る、 $R_e < 1$ の層流 領域で成り立つ速度に比例する抵抗力 D = $k_1 v$ は Stokes の抵抗法則と呼ばれており、流体力学の理論 により D = $6\pi a \mu_a v$ (即ち、 $k_1 = 6\pi a \mu_a$) と解析的 に導出されるから、抵抗係数は $C_D = D / \left(\frac{\rho_a}{2} v^2 \pi a^2\right)$ = $6\pi a \mu_a v / \left(\frac{\rho_a}{2} v^2 \pi a^2\right) = 24 \mu_a / (\rho_a v 2a) = 24 / R_e$ と表 現される.

 $1 < R_e < 2975$ の遷移領域では、実験値により、抵抗 係数は $C_D = 24/\sqrt{R_e}$ と表される.この遷移領域につい ては文献 ^[3] を参照することとし、ここでは扱わない.

2975 < Reの乱流領域では、速度の二乗に比例する抵

^{*1} 電子制御工学科: Department of Electronic Control System Engineering.

^{*2} 沼津高専 名誉教授: Professor emeritus. 現在は, 国際教育カレッ ジ (INTEC) 高専予備教育コース (KTJ): KTJ, DPT, International Education College, UiTM Section 17 Campus, 40200, Shah Alam, Selangor, Malaysia.

抗力を $D = k_2 v^2$ ($k_2 = C_D \frac{\rho_a}{2} S$, $C_D = 0.4 \sim 0.5$) と表 す. **Fig.1** では $R_e \ge 400000$ で C_D 値はさらに変化する.

速度に比例する抵抗の解析は, KTJ での物理教程範囲 をやや超えるが, KTJ06 でも学習した^[4]. 高専の力学の 専門基礎では, 流体摩擦力による抵抗の代表なので, 講義 する. 速度の二乗に比例する抵抗の実験値は講義で紹介 するが. その解析は卒業研究の学生に教える程度となる.

Fig.1 球の抵抗係数 C_D の実験データ.熱力学と流体「62 章:流れの中の球体の抗力^[5] http://homepage3.nifty.com/ skomo/f28/hp28 62.htm」より転載. Reynolds 数 $R = R_e$ (横軸)は、 $R_e = 2av_{\infty}/(\mu_a/\rho_a) (v_{\infty}$ は代表的な速度)と 定義され、流れの特性を表す.流体による抵抗力 D (実 測値)は、抵抗係数 C_D ($D = C_D \frac{\rho_a}{2} v_{\infty}^2 S$)に書き換える.

それぞれの抵抗法則の終端速度 v_{1∞}, v_{2∞} を用いて定 義した Reynolds 数について、 $R_{e1} = v_{1\infty}2a/\nu_a = 1$ を与 える固体球(球状雨滴)の半径は a = 3.97592×10⁻⁵ mと なるから、これ以下の小さい固体球(雨滴)に Stokes の抵 抗法則が適用される.また、 $R_{e2} = v_{2\infty} 2a / \nu_a = 1$ を与 える固体球 (球状雨滴)の半径は a = 1.09402×10⁻⁵ mと なり、 $R_{e2} = v_{2\infty} 2a / \nu_a = 2975$ を与える固体球の半径は $a = 2.26299 \times 10^{-3} \text{ m}$ となるから, $a \ge 2.26299 \times 10^{-3} \text{ m}$ の大きな固体球に速度の2乗に比例する抵抗法則が適用 される. なお, 雨滴は半径 1 mm 程度までは球形である が、それ以上に大きいと球から変形するので、体積を変え ずに球形にしたときの相当半径を用いて表現する[6].ま た,雨粒の大きさは,通常は直径1mm前後で,概ね直径 0.2~6 mm の範囲内にある. 直径 6 mm を超えるような 大きな雨粒は分裂し易く観測され難い [7]. 即ち、固体球 で雨滴を近似できる半径の上限が1mmであると言える.

Stokes の抵抗法則の場合、 $k_1 = 6\pi a \mu_a$ と空気の粘性係 数 $\mu_a = 1.82 \times 10^{-6}$ Pa s を用い、終端速度 v_{1t} を得る:

$$\begin{split} v_{1t} &= \frac{mg}{k_1} = \rho \frac{4\pi a^3}{3} \frac{g}{6\pi a \mu_a} = 1.19658 \times 10^8 a^2 \quad (2.2) \\ 対応して, \quad R_{e1} &= v_{1t} 2a / \nu_a = 1.59106 \times 10^{13} a^3 \ \mbox{C5.5} . \end{split}$$

速度の2 乗に比例する抵抗法則の場合には、 $C_D = 0.4 \sim 0.5$ (**Fig.1**) より $k_2 = C_D \frac{\rho_a}{2} \pi a^2 = 0.25 \rho_a \pi a^2$ と表

されるから,空気の密度 $\rho_a = 1.21 \text{ kg/m}^3$ を用い,終端 速度 v_{2t} を得る:

$$v_{2t} = \sqrt{\frac{mg}{k_2}} = \sqrt{\rho \frac{4\pi a^3}{3} \frac{g}{0.25\rho_a \pi a^2}} = \sqrt{\frac{16\rho g}{3\rho_a}} a$$
$$= 207.835\sqrt{a}$$
(2.3)

よって,終端速度は固体球 (球状雨滴)の半径の平方根に 比例して, $R_{e2} = v_{2t}2a/\nu_a = 2.76353 \times 10^7 a^{3/2}$ と表さ れる. これの適用範囲は, R_e 数で 2975 < R_e < 2×10⁵, 固体球 (球状雨滴)の半径で 2.26299 × 10⁻³ m< a < 0.0593924 m である (**Fig.2**).

Fig.2 *v* [m/s] (縦軸) 対 固体球 (球状雨滴) の半径 *a* [m] (横軸). 速度の2 乗に比例する抵抗力が働く場合の終端速度 *v*_{2t} (黒色). 速度に比例する抵抗力の終端速度 *v*_{1t} (赤色).

以上の考察より,幾つかの固体球(球状雨滴)の半径に ついて計算すると,**Table 1**の結果が得られる.

Table 1 固体球 (球状雨滴)	の半径と落下速度	(終端速度)
---------------	-------	----------	--------

	半径 a [m]	落下速度 v_t [m/s]
雲粒	$1. \times 10^{-6}$	$1.19658 \times 10^{-4} (v_{1t})$
霧雨粒	0.00001	0.0119658 (v _{1t})
霧と雨の境	0.0001	$1.19658(v_{1t})$
雨粒	0.0008	$5.87848(v_{2t})$
雨粒	0.001	$6.57234(v_{2t})$
雨粒	0.002	$9.29469(v_{2t})$
雨粒	0.003	$11.3836(v_{2t})$

なお、**Table 1** で、3.97592×10⁻⁵ m< a < 2.26299×10⁻³ は遷移領域の抵抗法則に従うので、注意する.

もっと大きな雨粒は、安定には存在できず、小さな雨 粒に分裂して降って来る.そのことは、別の流体力学的 機構による.また、正確には、周囲流体による浮力が働 く.空気中の雨滴は、空気の浮力よりも雨滴の自重が大 きく雨滴は落下する.

空気抵抗がある場合の固体球(球状雨滴)の落下運動 (力学解析)

半径 a_1 , 密度 ρ_l の球状雨滴 (水滴) が, 上空の高さ h_0 の 位置から大気中を自由落下し地面に到達する力学問題を 考える. 固体球 (球状雨滴) の質量 m は $m = \rho_l \frac{4}{3} \pi a_1^3$ で あり, 球状雨滴は落下中に変形しないもの (固体球) とす る. 球状雨滴と大気の物性値の高さや温度による変化は 考えない. 高さ h_0 の位置を座標原点とし、鉛直下方にy軸を取る. 重力加速度を $g = 9.8 \text{ m/s}^2$ とする.

先ず,抵抗の無い場合の固体球(球状雨滴)の位置 $y_0 \equiv y_0(t)$ (t:時間)と速度 $v_0 \equiv v_0(t) = \dot{y}_0 (\dot{y}_0 = dy_0/dt)$ に 対して,自由落下の運動方程式 ($m\dot{v}_0 = mg$)より,初速 度 zero の「等加速度運動」の解を得る:

$$y_0(t) = \frac{g}{2}t^2, \ v_0(t) = gt$$
 (3.1)

次に,速度に比例する抵抗の場合の固体球(球状雨滴) の位置を $y_1 \equiv y_1(t)$,速度を $v_1 \equiv v_1(t)$ と表すと,自由 落下の運動方程式は次式となる:

 $m\dot{v}_1(t) = mg - c_1 v_1(t) \tag{3.2}$

 c_1 は抵抗係数である. (3.2)式は定数係数の線形非同次の 1 階微分方程式であり、平衡解 (定数の解) $v_{1t} = mg/c_1$ を持ち、(3.2)式の初速度 zero の解は次のように表される: $v_1(t) = \frac{mg}{c_1} \left(1 - e^{-\frac{c_1}{m}t}\right)$ (3.3)

この解は、初速度 zero で落下が始まり、 $t \to \infty$ で終端速 度 $v_{1t} = mg/c_1$ (等速度運動) に近づく、指数関数 $e^{-\alpha t}$ ($\alpha > 0, t \ge 0$) は $e^{-6} = 0.00247875 \sim 0$ となるから、速 度 $v_1(t)$ が終端速度に近づく特徴時間 (時定数の 3 倍) t_{1t} は $t_{1t} = 6/\alpha = 6m/c_1$ と評価される. (3.3) 式を用い、位 置 y_1 の方程式は次式となる:

$$\dot{y}_1(t) = v_1(t)$$
 (3.4)

これをtで積分し初期位置 zero により,解 $y_1(t)$ を得る:

$$y_1(t) = \frac{mg}{c_1}t - \frac{m^2g}{c_1^2}\left(1 - e^{-\frac{c_1}{m}t}\right)$$
(3.5)

次に,速度の二乗に比例する抵抗の場合の固体球(球状 雨滴)の位置を $y_2 \equiv y_2(t)$,速度を $v_2 \equiv v_2(t)$,抵抗係数 を c_2 と表すと,自由落下の運動方程式は次式となる:

 $m\dot{v}_2(t) = mg - c_2 v_2^2(t) \tag{3.6}$

(3.6) 式は定数係数の非線形1階微分方程式であり、平衡 解を2つ持ち、有意な解 v_{2t} は次式となる:

$$v_{2t} = \sqrt{\frac{mg}{c_2}} \tag{3.7}$$

(3.6) 式から, 初速度 zero の解 v₂(t) を得る:

$$v_2(t) = \sqrt{\frac{mg}{c_2}} \tanh\left[\sqrt{\frac{c_2g}{m}}t\right]$$
(3.8)

この解は、初速度 zero で落下が始まり、 $t \to \infty$ で終端速 度 $v_{2t} = \sqrt{mg/c_2}$ (等速度運動) に近づく、また、双極線 関数 $tanh(\beta t)$ は $tanh(3) = 0.995055 \sim 1$ となるから、 速度 $v_2(t)$ が終端速度に近づく特徴時間 (時定数の 3 倍) t_{2t} は $t_{2t} = 3/\beta = 3\sqrt{m/(c_2g)}$ と評価される. (3.8) 式を 用い、固体球の位置 y_2 の方程式は次式となる:

$$\dot{y}_2(t) = v_2(t)$$
 (3.9)

これを t で積分し初期位置 zero により, 解 $y_2(t)$ を得る: $y_2(t) = \frac{m}{c_2} \text{Log} \left[\cosh \left[\sqrt{\frac{c_2 g}{m}} t \right] \right]$ (3.10) 次に、速度に比例する抵抗と速度の二乗に比例する抵抗 が共存する場合の固体球(球状雨滴)の位置を $y_3 \equiv y_3(t)$ 、 速度を $v_3 \equiv v_3(t)$,抵抗係数を c_1, c_2 と表すと、自由落 下の運動方程式は次式となる:

$$m\dot{v}_3(t) = mg - c_1v_3 - c_2v_3^2(t)$$
 (3.11)

(3.11) 式は定数係数の非線形1階微分方程式であり、平 衡解を2つ持ち、有意な解v_{3t}は次式となる:

$$v_{3t} = \frac{-c_1 + \sqrt{c_1^2 + 4mgc_2}}{2c_2} \tag{3.12}$$

ここで, $v_3(t) = v_{3t} + v_{31}(t)$ とおき, (3.11) 式は次のよ うに書き替えられる:

 $m\dot{v}_{31}(t) + \sqrt{c_1^2 + 4mgc_2 v_{31}(t) + c_2 v_{31}(t)^2} = 0 \quad (3.13)$ これを解き、初速度 zero の解 $v_3(t) = v_{3t} + v_{31}(t)$ を得る: $v_3(t) = \frac{2mg}{c_1 + \sqrt{c_1^2 + 4mgc_2} \coth\left[\frac{\sqrt{c_1^2 + 4mgc_2}t}{2m}\right]} (3.14)$

この解に含まれている双曲線関数の特性値 $\coth(3) \sim 1$ を用いることにすると、速度 $v_3(t)$ が終端速度 $v_{3t} = 2mg/\left(c_1 + \sqrt{c_1^2 + 4mgc_2}\right)$ に近づく特徴時間 (時定数の3倍) t_{3t} は、 $t_{3t} = 6m/\sqrt{c_1^2 + 4mgc_2}$ と評価される.

(3.14) 式を用い,固体球 (球状雨滴)の位置 y₃の方程式 は次式となる:

$$\dot{y}_3(t) = v_3(t)$$
 (3.15)

これを t で積分し初期位置 zero により, 解
$$y_3(t)$$
 を得る:
 $y_3(t) = \frac{-c_1}{2c_2}t + \frac{m}{2c_2}\left(-\log\left[c_1^2 + 4mgc_2\right]\right]$
 $+\log\left[c_1^2 + 2mgc_2 + 2mgc_2\cosh\left[\frac{\sqrt{c_1^2 + 4mgc_2}t}{m}\right]\right]$
 $+2\arctan\left[\frac{c_1 \tanh\left[\frac{\sqrt{c_1^2 + 4mgc_2}t}{2m}\right]}{\sqrt{c_1^2 + 4mgc_2}}\right]$
(3.16)

ここに示した速度に比例する抵抗と速度の二乗に比例す る抵抗が共存する場合の解は,1階の非線形微分方程式 の解析解であることに注意する.

以上に求めた解の振舞は、次節の計算例に示される.

4 空気抵抗がある場合の固体球(球状雨滴)の落下運動の計算例

静止している空気中を落下する固体球 (球状雨滴)の密度 を $\rho = 10^3 \text{ kg/m}^3$ とし、空気の密度を $\rho_a = 1.21 \text{ kg/m}^3$, 粘性係数を $\mu_a = 1.8 \times 10^{-5} \text{ Pa s}$ とする、固体球 (球状雨 滴)の代表的な半径として、 $a_1 = 3 \times 10^{-3} \text{ m}$ (大きい雨 粒)と $a_1 = 3 \times 10^{-5} \text{ m}$ (小さい雨粒)の2つの場合を考え る、終端速度の特徴は速度の解で解析できるが、初期高 さ $h_0 = 1 \text{ km}$ から地面に到達する落下時間を求める、前 節で求めた式を用いて解析した結果, $a_1 = 3 \times 10^{-3} \text{ m}$ の 大きな球状雨滴 (固体球) の計算結果が **Table 2** と **Fig.3a**, **3b**, **4c** に示され,速度の二乗に比例する抵抗力が適用さ れる.一方, *a*₁ = 3 × 10⁻⁵ m の小さな球状雨滴 (固体 球) の計算結果が **Table 3** と **Fig.4a**, **4b** に示され,速度に 比例する抵抗力が適用される.また,速度に比例する抵 抗力と速度の二乗に比例する抵抗力が共存する場合の (3) は、2 つの抵抗法則をうまく棲み分けていることが分る.

Table 2 Falling of a sphere of radius $a_1 = 3 \times 10^{-3}$ m (big rain drop), for which $m = 4\pi\rho a_1^3/3 = 1.13097 \times 10^{-4}$ kg, (1) $c_1 = 6\pi\mu_a a_1 = 1.01788 \times 10^{-6}$ N/(m/s) (Stokes' law) , (2) $c_2 = 0.25\rho_a \pi a_1^2 = 8.55299 \times 10^{-6}$ N/(m/s)² (Newton's law of drag force) and (3) with c_1 and c_2 . $v_{\infty} = \{v_{1t}, v_{2t}, v_{3t}\}$ and $t_{xt} = \{t_{1t}, t_{2t}, t_{3t}\}$.

Case	v_{∞} [m/s]	R_e	t_{xt} [s]
(1)	1088.89	439185	666.667
(2)	11.3836	4591.39	3.48478
(3)	11.3243	4567.46	3.48473

Table 3 Falling of a sphere of radius $a_1 = 3 \times 10^{-5}$ m (small rain drop), for which $m = 4\pi\rho a_1^3/3 = 1.13097 \times 10^{-10}$ kg, (1) $c_1 = 6\pi\mu_a a_1 = 1.01788 \times 10^{-8}$ N/(m/s), (2) $c_2 = 0.25\rho_a\pi a_1^2 = 8.55299 \times 10^{-10}$ N/(m/s)² and (3) with c_1 and

Fig.3a $v_0(t)$ m/s (black), (1) $v_1(t)$ m/s (dashed red), (2) $v_2(t)$ m/s (blue) and (3) $v_3(t)$ m/s (magenta) versus time t s, for $a_1 = 3 \times 10^{-3}$ m. Refer to the data in **Table 2**. The realistic case is given by (2) for Newton's law of drag.

Fig.3b $y_0(t)$ m (black), (1) $y_1(t)$ m (dashed red), (2) $y_2(t)$ m (blue) versus time t s, for $a_1 = 3 \times 10^{-3}$ m. The arrival time to the ground is $t_0 = 14.2857$ s, (1) $t_1 = 14.5985$ s, (2) $t_2 = 88.6507$ s and (3) $v_3(t)$ m/s (magenta). Refer to the data in **Table 2**. The realistic case is given by (2) for Newton's law of drag.

Fig.4a v₀(t) m/s (black), (1) v₁(t) m/s (dashed red), (2)
v₂(t) m/s (blue) and (3) v₃(t) m/s (magenta) versus time t s, for a₁ = 3 × 10⁻⁵ m. Refer to the data in Table 3. The realistic case is given by (1) for Stokes' law.

Fig.4b $v_0(t)$ m/s (black), (1) $v_1(t)$ m/s (dashed red), (2) $v_2(t)$ m/s (blue) and (3) $v_3(t)$ m/s (magenta) versus time

Fig.4c $y_0(t)$ m (black), (1) $y_1(t)$ m (dashed red), (2) $y_2(t)$ m (blue) and (3) $y_3(t)$ m (magenta) versus time t s, for $a_1 = 3 \times 10^{-3}$ m. The arrival time to the ground is $t_0 = 14.2857$ s, (1) $t_1 = 9183.68$ s, (2) $t_2 = 878.536$ s and (3) $t_3 = 9267$ s. Refer to the data in **Table 3**. The realistic case is given by (1) for Stokes' law.

5 固体球の落下実験と観察

INTEC の 3 階の教室に隣接する廊下から中庭に小球 (テ ニスボール、ゴルフボール、ピンポン玉、スーパーボー ル (同じ材質で半径が異なる 4 種類)) を静かに落下させ る (Fig.5a) と、ピンポン玉は少し遅れ気味であるがほか のボールは概ね同じ速度で落下し (Fig.5b)、ほかのボー ルが着地した後でピンポン玉が着地した (Fig.5c). これ らのボールの空気中の自由落下の運動特性は、前節の式 を用いて計算して、Table 4, Table 5 に示される. Table 4 の抵抗係数は、(h) と (i) を除けば、 c_2 が主の値となる. Table 5 は、(h) と (i) を除けば、(2) の量 (v_{02} , R_{e2} , t_{2t}) と (3) の量 (v_{03} , R_{e3} , t_{3t}) の値が近く、乱流域の条件を満た している.

Table 4 Characteristic values on air drag force coefficient for various spherical balls.

(code) name	m	d	a	ρ	c_1	c_2
(a) tennis ball	6.03×10^{-2}	6.25×10^{-2}	3.125×10^{-2}	4.7171×10^2	1.0603×10^{-5}	9.2806×10^{-4}
(b) table tennis ball	2.3×10^{-3}	3.95×10^{-2}	1.975×10^{-2}	7.1275×10^1	6.701×10^{-6}	3.7069×10^{-4}
(c) golf ball	4.55×10^{-2}	4.27×10^{-2}	2.135×10^{-2}	1.1162×10^3	7.2439×10^{-6}	4.3318×10^{-4}
(d) super ball 01	1.25×10^{-2}	2.93×10^{-2}	1.465×10^{-2}	9.4909×10^2	4.9706×10^{-6}	2.0396×10^{-4}
(e) super ball 02	2.18×10^{-2}	3.48×10^{-2}	1.74×10^{-2}	9.8792×10^2	5.9037×10^{-6}	2.8772×10^{-4}
(f) super ball 03	2.1×10^{-2}	4.1×10^{-2}	2.05×10^{-2}	5.8193×10^2	6.9555×10^{-6}	3.9938×10^{-4}
(g) super ball 04	3.6×10^{-2}	4.25×10^{-2}	2.125×10^{-2}	8.9565×10^2	7.21×10^{-6}	4.2913×10^{-4}
(h) rain drop 01	4.1888×10^{-9}	$2. \times 10^{-4}$	$1. \times 10^{-4}$	1000	3.3929×10^{-8}	9.5033×10^{-9}
(i) rain drop 02	4.1888×10^{-6}	$2. \times 10^{-3}$	$1. \times 10^{-3}$	1000	3.3929×10^{-7}	9.5033×10^{-7}
(j) rain drop 03	1.131×10^{-4}	$6. \times 10^{-3}$	$3. \times 10^{-3}$	1000	1.0179×10^{-6}	8.553×10^{-6}

Table 53 つの空気抵抗 model の終端速度と Reynolds 数と特性時間の比較。

(code)	v_{1t}, v_{2t}, v_{3t}	R_{e1}, R_{e2}, R_{e3}	t_{1t}, t_{2t}, t_{3t}
(a)	5.5734×10^4 , 25.234, 25.228	$2.3416 \times 10^8, 1.0602 \times 10^5, 1.0599 \times 10^5$	$3.4123 \times 10^4, 7.7247, 7.7247$
(b)	3.3637×10^3 , 7.7978, 7.7888	$8.9315 \times 10^{6}, 2.0705 \times 10^{4}, 2.0681 \times 10^{4}$	2.0594×10^3 , 2.3871, 2.3871
(c)	6.1555×10^4 , 32.084, 32.075	$1.7669 \times 10^8, 9.2092 \times 10^4, 9.2068 \times 10^4$	3.7687×10^4 , 9.8215, 9.8215
(d)	2.4645×10^4 , 24.507, 24.495	4.8541×10^7 , 4.827×10^4 , 4.8246×10^4	1.5089×10^4 , 7.5022, 7.5022
(e)	3.6188×10^4 , 27.249, 27.239	$8.4655 \times 10^7, 6.3745 \times 10^4, 6.3721 \times 10^4$	2.2156×10^4 , 8.3416, 8.3416
(f)	2.9588×10^4 , 22.7, 22.692	$8.1548 \times 10^7, 6.2564 \times 10^4, 6.254 \times 10^4$	1.8115×10^4 , 6.9491, 6.9491
(g)	4.8932×10^4 , 28.673, 28.664	$1.398 \times 10^8, 8.1916 \times 10^4, 8.1892 \times 10^4$	2.9959×10^4 , 8.7773, 8.7773
(h)	1.2099, 2.0784, 0.95463	16.266, 27.942, 12.834	0.74074, 0.63623, 0.48264
(i)	$1.2099 \times 10^2, 6.5723, 6.3962$	$1.6266 \times 10^4, 8.8361 \times 10^2, 8.5994 \times 10^2$	7.4074×10^1 , 2.0119, 2.0112
(j)	1.0889×10^3 , 11.384, 11.324	$4.3919 \times 10^5, 4.5914 \times 10^3, 4.5675 \times 10^3$	$6.6667 \times 10^2, 3.4848, 3.4847$

場合に $t_0 = 1.4286 imes 10^1 \, {
m s}$ であり,空気の抵抗力がある と Table 6 となる.

Table 6 3 つの空気抵抗 model の落下時間 ($h_0 = 1000$ m).

(code)	t_1	t_2	t_3
(a)	1.4292×10^1	4.1414×10^1	4.1423×10^{1}
(b)	1.4386×10^{1}	1.2879×10^2	1.2894×10^2
(c)	1.4291×10^1	3.3438×10^1	3.3446×10^1
(d)	1.4299×10^1	4.2538×10^1	4.2558×10^1
(e)	1.4295×10^{1}	3.8626×10^1	3.864×10^1
(f)	1.4297×10^1	4.5658×10^1	4.5675×10^{1}
(g)	1.4293×10^{1}	3.6904×10^1	3.6915×10^1
(h)	8.2665×10^2	4.813×10^2	1.0476×10^3
(i)	1.7657×10^1	1.5262×10^2	1.568×10^2
(j)	1.4599×10^1	8.8651×10^{1}	8.911×10^{1}

(a) のテニスボール場合に幾つかの高さから自由落下させ

Table 7 テニスボールが自由落下し地面に到達する時間.

/		IN PRIMI	o and - P	·/~ / ~ · ·
h_0	t_0	t_1	t_2	t_3
100	4.5175	4.5181	5.7175	5.719
10	1.4286	1.4286	1.4655	1.4655
5	1.0102	1.0102	1.0232	1.0235
3	0.78246	0.78248	0.7885	0.7885
1	0.45175	0.45176	0.45291	0.453
0.5	0.31944	0.31944	0.31985	0.32

これにより、3m以下の高さからの自由落下では空気の 抵抗力の影響は非常に小さくなり、空気の抵抗力を無視 しても差し支えないと言える.

h₀ = 1000 m からの落下時間は、空気の抵抗力がない (b) のピンポン玉の場合に幾つかの高さから自由落下さ せて,地面に到達する時間を求めた (Table 8). ピンポン 玉の質量が小さいので、運動方程式中で抵抗力の効果が 大きく, 高さ 0.5 m からの自由落下でも遅れが生じる.

• -	,	1.2	_				-					~	0.0			~	
	Tal	ble 8	\mathbb{P}°	ンポ	Σ^{\pm}	玉が	自	由刻	友下	1	批ī	fīι	こ到	達す	る時	間	

able 8	ピンポン玉;	が自由落下	し地面に到	達する時間
h_0	t_0	t_1	t_2	t_3
100	4.5175	4.5275	13.376	13.391
10	1.4286	1.4296	1.8259	1.8275
5	1.0102	1.0106	1.1497	1.1505
3	0.78246	0.78276	0.84677	0.8475
1	0.45175	0.45185	0.46398	0.4645
0.5	0.31944	0.31949	0.32375	0.324
	h0 100 10 5 3 1 0.5	bit $E > \# > \# > \# > \# > \# > \# > \# > \# > \# > $	ho t_0 t_1 100 4.5175 4.5275 10 1.4286 1.4296 5 1.0102 1.0106 3 0.78246 0.78276 1 0.45175 0.45185 0.5 0.31944 0.31949	ble 8 $2 \vee \pi \vee \pm \pi$ [由落下し地面に到; h_0 t_0 t_1 t_2 100 4.5175 4.5275 13.376 10 1.4286 1.4296 1.8259 5 1.0102 1.0106 1.1497 3 0.78246 0.78276 0.84677 1 0.45175 0.45185 0.46398 0.5 0.31944 0.31949 0.32375

Fig.5a INTEC の Block U の 3 階の教室の廊下から中庭 にボールを自由落下させる瞬間.3名の学生が2種類ず つ計6個のボールを持っている.

て, 地面に到達する時間を求めた (Table 7).

Fig.5b 落下中の6 個のボール.

Fig.5c ボールが地面に達し、跳ね上がった瞬間.

これらの静止画は、学生の携帯電話で撮影した video から変換したものである。落下中のボールの様子は video 映像の方が良く分かる.

教室内で、約 1.5 m の高さから自由落下させると、いず れのボールもほぼ同時刻に床面に達した. 敢えて言えば、 ピンポン玉は少し遅れる. つまり. ボールの質量を m_1 、 位置を $y_1 \equiv y_1(t)$ とし、抵抗を D とすると、ボールの運 動方程式は (3.1) 式で表される. 抵抗力 D は、物体の面 積のみの関係するから、 m_1 が大きいと相対的に空気抵抗 の効果は小さくなるので、落下運動中に空気抵抗を無視 できる. しかしながら、落下時間が長いと、小さな抵抗 力が次第に効いて終端速度に近付き、等速運動になる.

6 おわりに

空気(流体)中の物体に働く抵抗の法則を雨滴の固体球 modelを中心にまとめ, KTJ08の物理学実験と合わせて 空気の抵抗力の効果を考慮すべき条件を明示した.速度 に比例する抵抗と速度の二乗に比例する抵抗力が共存す る場合の運動方程式(1階の非線形微分方程式)が解析解 を持つことを示し,その解は Reynolds 数による抵抗法則 を棲み分けることを示した.

空気の抵抗は、物体が 1.5 m 以下高さから自由落下す る場合には無視できる程に小さく、3 m 程度高さから自 由落下する場合には軽い物体の場合には抵抗が作用し、 重い物体の場合には抵抗は無視できる. さらに高いとこ ろからの自由落下では、質量が小さく半径が小さい物体 では速度に比例する抵抗力が働き、質量が大きい物体に は速度の二乗に比例する抵抗力が働く. さらに高いとこ ろから自由落下させる場合、物体には速度の二乗に比例 する抵抗力が働き、終端速度で落下する.

雨滴の半径が1mm以下の場合の自由落下では、固体 球 model で近似できる.この半径より大きいと、球形か ら変形し、雨滴の変形・分裂が起こる.

雨滴は液体なので、球状液滴の安定性の問題として、流体力学的解析が期待される。粘性ポテンシャル理論^[8]の 視点から、一定加速度で流体中を運動する液体球の界面 不安定について、これまでの研究^{[9]-[12]}を踏まえて、取 組むことができる。

本報告は, KTJ の物理学教材の開発であるが, 高専の 3-5 年生の専門基礎の教程の改正に活用できる. 特に, 小 中高の新教程の移行が終わり, 高専の教程の組換・再編 が進む中で, 質の高い教材開発が求められている.

参考文献

- [1] 物理基礎 (平成 23 年 3 月 30 日検定済), 物理 (平成 24 年 3 月 15 日検定済), 数研出版, 平成 25 年 1 月 10 日発行.
- [2] 舟田 敏雄: "KTJ07 Semester 3,4 の物理実験テーマ" (内部資料) KTJ, INTEC, 2015.
- [3] 小西 克享: "終端速度の求め方" 埼玉工業大学機械工
 学学習支援セミナー http://www.sit.ac.jp/user/konishi/ JPN/L_Support/SupportPDF/TerminalVelocity.pdf
- [4] 舟田 敏雄: "雨滴の落下速度" (physics-KTJ07-06nov28rev.pdf, 2014.12.3)
- [5] 資料「第4章 雨滴の落下速度 (2001.5.26)」 http://www5b.biglobe.ne.jp/ saturn/meteology/04.htm
- [6] 荒木 健太郎: 『雲の中では何が起こっているのか』第 2版、ベレ出版、2014 年 ISBN 978-4-86064-397-3
- [7] Wikipedia: "雨" https://ja.wikipedia.org/wiki/雨
- [8] D. D. Joseph, T. Funada & J. Wang: Potential Flows of Viscous and Viscoelastic Fluids. Cambridge University Press, 2007.
- [9] E. Y. Harper, G. W. Grube, & I-D. Chang: "On the breakup of accelerating liquid drops" *J. Fluid Mech.* 52 (1972), pp.565-591.
- [10] J. C. Padrino, T. Funada & D. D. Joseph: "Purely irrotational theories for the viscous effects on the oscillations of drops and bubbles" *International Journal of Multiphase Flow* 34 (2008), pp.61-75.
- [11] I. Rozhkov, A. F. Vakakis & R. H. Rand: "Non-linear modal interactions in the oscillations of a liquid drop in a gravitational field" *International Journal of Non-Linear Mechanics* 36 (2001), pp.803-812.
- [12] 舟田 敏雄, Joseph Daniel: "一定加速度で運動する液 滴の界面不安定と振動現象の解析"第 59 回理論応 用力学講演会講演論文集 NCTAM 2010, pp.125-126 (平成 22 年 6 月 8 日発行). OS1-1 気液界面の物理と 動力学, 講演番号 1D11.