
Deprote	inization and Ch	emica	I Modificatio	on of Natural Rubl	ber		
Name Yoko Aoyama			E-mail	y-aoyama@numazu-c	t.ac.jp		
Job Title Professor			Degree Ph.D.			1258	
Academic Socie	The Cl The So	American Chemical Society The Chemical Society of Japan The Society of Polymer Science, Japan Japan Research Institute of Material Technology					
Research Keywords		Chemical Modification, Functionalization of Polymeric Materials, N Rubber			Materials, Natural		
Technical Fie possible for colla			process of natural rubbo tion of polymers	er			

We are focusing on development of deproteinization process of natural rubber (NR) to decrease the allergy concern and chemical modification of NR to obtain the novel functional properties.

Natural rubber (NR) is a highly valuable commercial biopolymer made from *Hevea brasiliensis* latex. It is mostly composed of *cis*-1,4-polyisoprene and trace amounts of non-rubber components, such as proteins, carbohydrates, and lipids. Natural rubber is used and cannot be replaced by synthetic alternatives in various applications including automotive/aircraft tires, medical devices, countless engineering and consumer products. Over the past years, however, concerns over allergic reactions related to some proteins present in natural rubber latex have been publicized.

We collaborate with chemical scientists and engineers in academia and industry to drive these research projects on natural rubber.

(1) Developing deproteinization process of natural rubber using microfiltration

Denaturation of natural rubber protein was made by incubation of high ammonium natural rubber latex (HA-NR) with urea in the presence of surfactant. We are interested in microfiltration as a removal process of denatured and water soluble hevein protein from rubber latex other than centrifugal separation.

(2) Chemical modification of natural rubber

We are studying the chain end modification of *cis*-1,4-polyisoprene from natural rubber to obtain the unique telechelic polymers.

Synthesis and Characterization of modified Imogolite

					I MARKED AND THE OWNER AND
Name	OOKAWA Masas	ni	E−mail	mokawa@numazu-ct.ac.jp	STORES
Job Title	Professor		Degree	Doctor of Science	
Academic Socie	ty and Association			apan", "Society of computer chemical society of JAPAN	
Research Keywo	ords	Imogol	ite, Nanotubes, Ox	idation Catalyst	
Technical Fie possible for colla		• an	alysis using solid s alysis using FT-IR plecular simulation	tate NMR , XRD and Laser Raman	

Details of the Research Theme

Application for new oxidation catalyst

Synthesis of new nano-scale materials

Imogolite is a naturally occurring, aluminosilicate clay mineral with typical chemical composition of (OH)₃Al₂O₃SiOH. The tubular structure of imogolite proposed by Cradwick et al. is shown in Fig. 1. The tube wall consists of a single continuous gibbsite sheet and orthosilicate anions. The imogolite has an outer diameter of ca. 2 nm and an inner diameter of 1 nm. The FE-SEM image of synthetic imogolite is shown in Fig. 2. The fibrous morphology was observed. Recently we synthesized Fe-containing imogolite using the modified method reported by Suzuki et al.

It was shown that the synthetic material played as catalyst to synthesize phenol from benzene with H_2O_2 .



Fig.1 Structure model of Imogolite

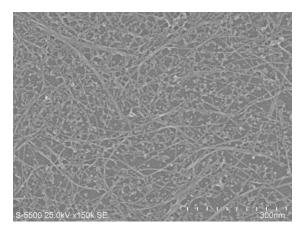
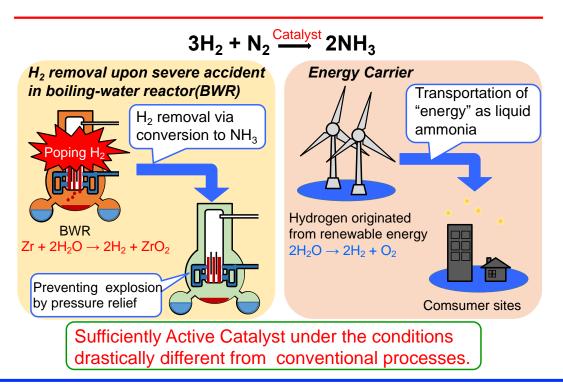


Fig.2 FE-SEM image of synthetic imogolite

Heterogeneous Catalysis for Environmental Conscious Applications


Name	INAZU Koji		E-mail	kinazu@numazu-ct.ac.jp	66	
Job Title	Professor		Degree	Doctor of Engineering	1-2	
Academic Society and Association		Chemical Society of Japan, American Chemical Society, Catalysis Society of Japan, the Japan Petroleum Institute, Japan Zeolite Association				
Research Keywords Technical Fields and Topics possible for collaboration		Heterogeneous catalysis, Supported metal catalyst, Ammonia, Renewable energy, Hydrogen, Abatement of environmental pollutants.				
		Chemical conversion of variety of compounds for utilization of energy and for environmental protection.				

Outline of the Research

Toward novel heterogeneous reactions at solid-gas and/or solid-liquid interfaces, unique and original solid catalysts have been developed in our research group.

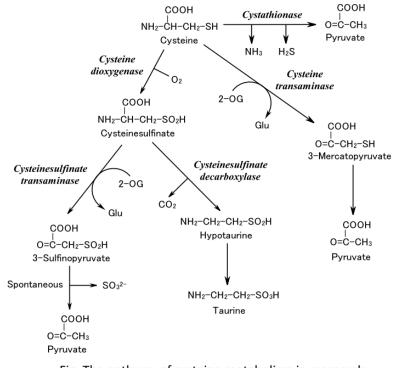
In development of environmental benign processes both in energy utilization and in production/abatement of artificial chemicals, catalysts play a crucial role by serving new reaction pathways with lower activation energy.

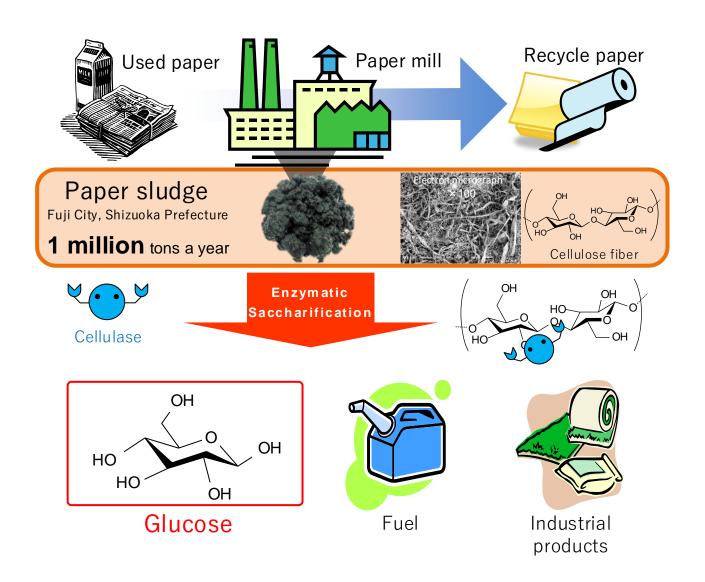
In our research group, variety of solid catalysts especially supported metal catalysts are prepared and examined for such processes. Recent activities are of great relation to so-called energy carrier for utilizing renewable energy. Our current specific target is ammonia, which is well-known fundamental chemicals with huge production mass worldwide, as an energy carrier for renewable energy. Hydrogen can be produced by electrolysis of water powered by solar voltaic or wind power generation. Nitrogen is also able to be obtained by various separation techniques such as cryogenic or membrane ones. Although feeding pressure and rate of such reactants, i.e. H2 and N2, are fluctuating upon a change in the weather, our original ruthenium, iron, and cobalt based catalysts can work even under the conditions drastically different from conventional industrial ammonia synthesis conditions. Moreover, taking such advantages of our catalysts, we have been trying to adopt the catalyst as a key device to prevent the boiling-water nuclear reactors from tragic hydrogen explosion upon such a severe accident caused by hectic earthquake.

	Sulfur amino	acid	metabo	olism in fish	
Name	GOTO Takanobu		E-mail	goto@numazu-ct.ac.jp	GON
Job Title	Professor		Degree	Ph.D in Biochemistry	
Academic So	ociety and Association	The Ja	ipanese Socie	ety of Fisheries Science	
Research Ke	ywords	Fish, N	letabolism, Sı	ulfur amino acids, Taurine,	
Technical possible for	Fields and Topics collaboration	• An	zyme assay nino acid anal gh performano	ysis ce liquid chromatography	

As demonstrated in previous many reports, some fish, especially marine fish require taurine for its maintenance of normal physiological condition such as prevention of green liver syndrome and best growth performance. However, it is still uncertain that why and how fish produce taurine in its body although the biosynthetic capacities and ways of this amino acid are different among the fish species. Until now, it seems that fresh water fish has higher capacity to produce taurine compared to marine fish and common carp has a peculiar way to biosynthesize this amino acid. Many unsolved questions concerning taurine biosynthesis still have been existed in fish.

In order to answer the questions, we are going to establish suitable methods to measure enzyme activities about sulfur amino acid metabolism including taurine biosynthesis in fish. In mammals, taurine is thought to be produced from cysteine in various ways and organs. Our research data will give an additional information about the metabolic and physiological difference of sulfur amino acids between mammals and fish and these information will be useful in developing new fish feed in future.




Fig. The pathway of cysteine metabolism in mammals.

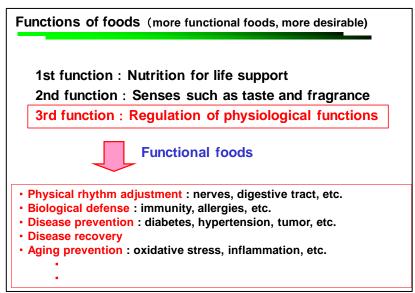
Recovery of unused resources from biomass waste and production of useful substances

	NameTAKEGUCHI MasayukiJob TitleProfessorAcademic SocietyThe Society of C		HI Masayuki	E-mail	takeguch@numazu-ct.ac.jp				
			Degree	Doctor (Engineering)					
			hemical Eng	ineers, Japan, The Chemical					
	and Associa	ation	Society of Japan, T	The Society fo	or Biotechnology, Japan				
	Research Keywords			Biomass, Social circulating system, Environmentally conscious technology, Nastewater treatment technology					
	Technical Fields andTopics possible forcollaboration		Production of uZero-emission	iseful substan technologies	ed resources from biomass was aces from biomass waste using r for establishment of recycling-or microorganisms from biogas (m	microorganisms riented society			

Details of the Research Theme

Our laboratory is developing technology to recover unused resources from biomass waste (such as proteins, sugars, methane, etc.) discharged from the industrial and agricultural fields, and to convert them into useful substances. As an example, technology for recovering glucose resources from paper waste which is shown below.

Development of Health Beneficial Foods


Name	YOSHINO Kyoji		E-mail	k−yoshino@numazu− ct.ac.jp		
Job Title	Professor		Degree	Doctor of Pharmacy		
Academic Socie	ty and Association	Societ Pharm	y for free rad aceutical Society	dical research JAPAN, The y of Japan, etc.		
Research Keywo	ords	Food, Nutrition, Antioxidant, Lifestyle disease, Immunology				
Technical Fields and Topics possible for collaboration		preve in viv	ntion activity on o experimental n sis of active con	eneficial effects, such as antioxi Lifestyle diseases, of foods by i nethods nponents including polyphenols ir	n vitro and	

Details of the Research Theme

Mainly, we evaluate the health beneficial functions of food ingredients. We also receive requests for surveys on specific ingredients or functions.

Recently, increases in the incidence of lifestyle diseases such as diabetes and allergies are social problems. To prevent these diseases by using the foods we ordinary ingest, we have evaluated the health beneficial effects of some food ingredients by in vitro and in vivo experimental methods. Currently, we are investigating some food materials that could suppress oxidative stress, inflammations, and excessive intakes of sugar and lipids. Unlike the development of pharmaceuticals, in the case of functional foods, it is thought to be desirable for us that many foods showing the same health beneficial effects are found, because our dietary life will be enriched by the variation of available foods. Therefore, we are conducting research with the goal of finding more food ingredients with similar health beneficial effects.

The image of health beneficial foods and the active components

Plant breeding science and cytogenetics

Name Furukawa Kazum			E-mail	furukawa@numazu-ct.ac.jp	60
Job Title	Associate professor	•	Degree	Ph.D. Arg.	NE P
Academic Society and Association		Society of plant breeding,, Chromosome science			
Research Keyw	ords	Plant o	ell, tissue an	d organ culture, Chromosome	analysis, Transformation
Technical Fields and Topics possible for collaboration		ChTraining	-	genesis induction in tea plant alysis by Fluorescent in situ hy by Agrobacterium-mediat ansformation	

Details of the Research Theme

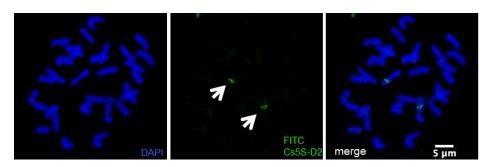
Tea plant breeding for sustainable agriculture and human life

The tea plant (*Camellia sinensis*) has unique functional components such as caffeine, catechin, theanine and so on in the leaves. Green tea is an important part of the Japanese cuisine. Japanese cuisine has been listed to the world intangible cultural heritage. And then our aim of research is to produce new tea cultivar.

Thus it is necessary the transformation technique as tools for understanding metabolic pathway. And in vitro culture technique is essential for transformation.

Our research themes are like below.

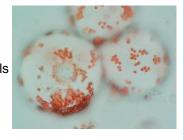
(1) Genetic transformation technique of tea plant


We have been experimenting with which of the two experimental systems is suitable for tea.

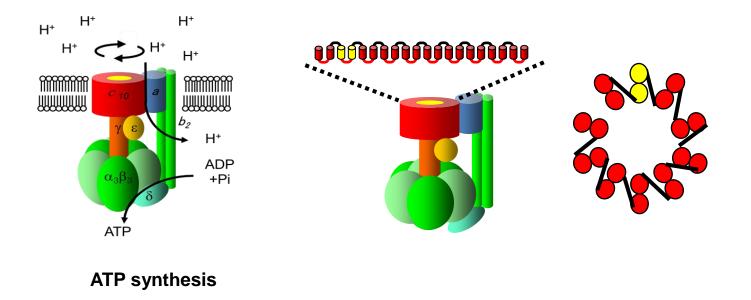
- · Agrobacterium-mediated transformation system
- Particle bombardment system
- (2) in vitro tissue or organ culture

using fluorescence probes.

As the transformation materials, somatic embryos have been induced via cotyledon culture.


(3) Chromosome analysis using fluorescence in situ hybridization After transformation, foreign gene locus should be detected on the chromosome. Thus each chromosome identification has been examined

(Optional) Produce science education material Plant material is good for education. We have been produced science education materials and programs. For example, program of protoplasts isolation from vegetables and observation for junior high school students.



Study on					
Name	MITOME Noriyo		E-mail	mitome@numazu-ct.ac.jp	
Job Title	Associate Professo	r	Degree	Ph.D., Science, P.E. Jp	1361
Academic Society and Association		Japanese Biochemical Society, The biophysical society of Japan, The Institution of Professional Engineers, Japan			
Research Keywo	ords	ATP s	ynthase, fish vacci	ne, Volvox	
Technical Fields and Topics possible for collaboration			rification and anal ochemical analysis netic engineering	ysis of membrane protein of protein	

Purification and analysis of membrane protein, such as ATP synthase using biochemical technique and genetic engineering.

I am studying protein functions using biochemical and genetic engineering techniques. We have been studying the functions of ATP synthase, using genetic recombination technology and biochemical techniques. I am a Professional Engineer in Japan (biological engineering) and can cooperate in fields such as expression of various proteins using genetic engineering, development of purification methods, measurement of enzyme activity, and chemical modification of proteins.

ATP synthase, which is the main research target, is an important enzyme that exists widely from bacteria to mitochondria of eukaryotic cells and chloroplasts of plants and is widely involved in the synthesis of ATP. This enzyme is known to be a rotating molecular motor that synthesizes ATP by rotating the shaft by the energy of the flow of proton. The rotating shaft of ATP synthase is formed from several proton-binding proteins. I succeeded in producing an active ATP synthase which has 10 proton-binding proteins as a rotating shaft.

Synthesis of Particles and Organic-Inorganic Hybrids based on Natural Polysaccharide

Name YAMANE Setsuko			E−mail	syamane@numazu-ct.ac.jp	
Job Title	Associate Professo	r	Degree	Ph.D	
Academic Society and Association		The Society of Polymer Science, The Chemical Society of Japan, Japanese Society for Biomaterials			
Research Keywo	ords	Organi	c-Inorganic Hybrid	l, Hyaluronic Acid, Calcium Phospl	nate
Technical Fields and Topics possible for collaboration		• Me	easurement of sub	n of natural polysaccharide nicron size colloid particles ecular weight of natural polysacch	aride

Details of the Research Theme

Chemical modification of hyaluronic acid with small amounts of hydrophobic groups such as cholesteryl groups and alkyl groups forms colloidally stable particles in water.

The hydrophobized hyaluronic acid particles can trap proteins and release them easily, therefore the hydrophobic hyaluronic acid particles would be used to protein carrier.

Cholesterol-bearing hyaluronic acid (CHA) is an hydrophobized polysaccharide forms hydrogel particles 100-200 nm in diameter in water. CHA particles can trap proteins through hydrophobic interactions and release them in an active state by the exchange reaction with other proteins. In this research, we approach the functionalization of CHA particles for application of protein carrier.

- (1) We synthesize protein carrier by organic-inorganic hybrid method using CHA particle as organic material and calcium phosphate (CaP) as inorganic material. Mineralization of CaP as hard material against CHA particles would be prevents the burst release of proteins.
- (2) We control the size of CHA particles according to molecular weight of hyaluronic acid or degree of substitution of cholesteryl groups.

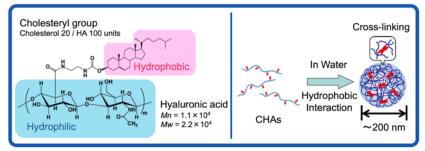


Figure 1. Schematic diagram of CHA particle

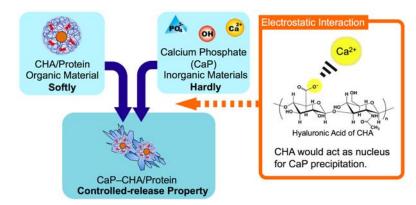
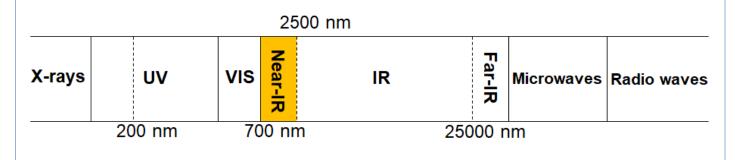


Figure 2. CHA-Calcium phosphate hybrid particle for protein carrier

Analytical Application of Near-IF	Absorbing Metal Complexes
--	---------------------------


Name Job Title	WARASHINA, Tomo Associate Professo	-	E−mail Degree	wara@numazu-ct.ac.jp Doctor of Engineering	60
Academic Society and Association		The Chemical Society of Japan, The Japan Society for Analytical Chemistry			
Research Keywo	ords	Metal (Complex•Ligand, I	Near-IR Absorption, Spectrosc	ору
Technical Fields and Topics possible for collaboration			restigation of abso alysis with TOF-N	prption and luminescence of ma NS	terials (in solutions)

Synthesis of Near-IR Absorbing Metal Complexes and Study for Analytical Application

Selling Point: Synthesis of Near–IR Absorbing Metal Complexes (λ_{max} 700~900 nm, ε 10⁴~10⁵)

In near-infrared (Near-IR) region (700~1200 nm), there are only weak overtone and combination bands arising from stretching and bending vibrations of the chemical bondings, such as -OH, -NH, and -CH. In view of analytical chemistry, this very low background absorption level thus with the excellently transparent nature is significantly fascinating, so that Near-IR spectroscopy in biological imaging makes possible nondestructive and noninvasive analyses *in situ*, *in vivo*, and on-line.

We have investigated spectroscopic properties of Near-IR absorbing d⁸-transition metal complexes with aromatic *o*diamines. We aim for the application of these metal complexes to industrial and medical fields, e.g., labeling reagent for target materials and photosensitizer of photodynamic therapy for tumor cells.

Available Equipment and Apparatus

V-670 UV-Visible/NIR Spectrophotometer (Jasco. Co,), F-4010 Fluorescence Spectrophotometer (Hitachi Co.),

MM-60R Multi-Function Water Quality Meter (DKK-TOA Co.), HM-25G pH Meter (DKK-TOA Co.),

JMS-T100LP Accu TOF LC-Plus Atmospheric Pressure Ionization High Resolution Time-of-Flight Mass Spectrometer (JEOL Ltd.)

HAB-151 Potentiostat Galvanostat (KOKUTO DENKO Co.)

Fabrication and Evaluation of Solution-Derived Ceramic Materials and Thin Films

Name Job Title	ARAI Takashi Assistant Professor		E-mail Degree	arai.takashi@numazu- ct.ac.jp Ph.D. in Engineering	
	ty and Association		eramic Society of		
Research Keywo	ords	Ceram	ics, Thin film, Che	mical solution deposition,	
Technical Fields and Topics possible for collaboration		• Ev		c materials and thin films by so tal structure, surface morph	-

Details of the Research Theme

In the solution method, which is a relatively inexpensive ceramics synthesis method, the synthesis process affects the properties of fabricated materials. It is possible to propose a synthesis process and an evaluation method that matches the characteristics of products.

The advantages and preparation flow of the chemical solution deposition method, which is actively used for the synthesis of ceramics and thin films.

Advantages of chemical solution deposition

- Low temperature synthesis compared to solid phase method
- Design of chemical bonding at the molecular/atomic level in solution
- No need for large equipment = cost effective method for the industrial application
- Morphology control suitable for the devices

Flow in the chemical solution deposition

In our study, by using chemical solution deposition technique, morphology, structure, composition and stress are controlled for a fabrication of ceramics or thin films with desired characteristics. The main aim in our laboratory is the fabrication of piezoelectric ceramics thin films with high properties.

Our laboratory has also analysis technology to evaluate crystal structure, surface morphology and elemental mapping by using X-ray diffraction, atomic force microscopy and scanning electron microscopy.

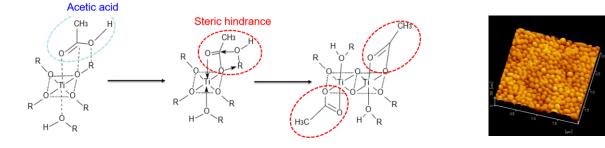


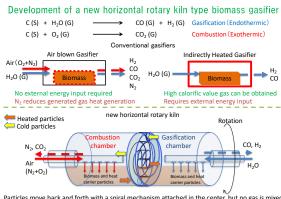
Fig.2 Surface morphology of a film prepared by chemical reaction control

Energy Conversion from Organic Waste and Unused Hydrocarbon Resources by Thermochemical Processing

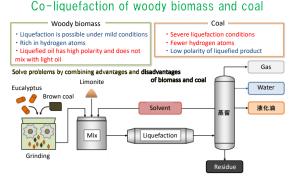
	Name	ame ITO Takuya		E-mail	t.ito@numazu-ct.ac.jp	1000
	Job Title	Assistant Professor		Degree	Ph. D. in Engineering	
	Academic Society and Association Japan		Japan Institute of Energy. The Society of cal Engineers, Japan. The Chemical society of Japan Society of Material Cycles and Waste ement			
	Research Keywords		Renewable energy, Biomass, BDF, Waste plastic, Liquefaction, Gasification			

Details of the Research Theme

Conversion of various wastes and unused resources to various types of energy (liquid and gas fuels, hydrogen, electricity, etc.)


We establish local energy production system for local consumption by designing a small but efficient energy conversion process.

Wastes are inevitably generated in any industry, greater or lesser. It is necessary to use these wastes effectively from the viewpoint of energy security, especially in our country whit poor energy resources. Among them, biogenous wastes such as waste wood, waste cooking oil, agricultural residues, sewage sludge are called biomass and they do not increase atmospheric CO₂ concentration by their combustion because CO₂ emitted originally came from present atmosphere (called carbon neutral). On the other hand, waste plastics have a problem of securing landfill sites, and their effective use is required.


If these wastes are to be used effectively, the collection cost will be a major issue because they are widely dispersed and discharged. Therefore, our laboratory aims to develop a small-scale and efficient energy conversion process which makes it possible to produce necessary energy at the place where waste is discharged with reduced collection cost. So far, we have conducted the following research through actual industry-government-academia collaboration.

- Production of light oil alternative from woody biomass and plastics in municipal waste (NEDO, contracted with companies)
- Development of biodiesel production process from animal oil-and-fats with ill low-temperature properties (joint • research with companies)
- Development of highly-efficient hydrogen production process from sewage sludge (Ministry of Land, Infrastructure, . Transport and Tourism, contracted with companies)
- Development of fluidized bed materials for fluidized bed combustion/ gasification of biomass containing high • potassium (Joint research with companies)

The following are some of the ongoing research themes.

Particles move back and forth with a spiral mechanism attached in the center, but no gas is mixed. This makes it possible to generate high calorie gas even in air blown gasifie

Produce alternative fuel to petroleum by co-liquefying eucalyptus planted in Australia and Cheap brown coal from Australia